首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A role of heat shock protein 27 (HSP27) as a potential biomarker has been reported in various tumour entities, but comprehensive studies in pancreatic cancer are lacking. Applying tissue microarray (TMA) analysis, we correlated HSP27 protein expression status with clinicopathologic parameters in pancreatic ductal adenocarcinoma specimens from 86 patients. Complementary, we established HSP27 overexpression and RNA-interference models to assess the impact of HSP27 on chemo- and radiosensitivity directly in pancreatic cancer cells. In the TMA study, HSP27 expression was found in 49% of tumour samples. Applying univariate analyses, a significant correlation was found between HSP27 expression and survival. In the multivariate Cox-regression model, HSP27 expression emerged as an independent prognostic factor. HSP27 expression also correlated inversely with nuclear p53 accumulation, indicating either protein interactions between HSP27 and p53 or TP53 mutation-dependent HSP27-regulation in pancreatic cancer. In the sensitivity studies, HSP27 overexpression rendered HSP27 low-expressing PL5 pancreatic cancer cells more susceptible towards treatment with gemcitabine. Vice versa, HSP27 protein depletion in HSP27 high-expressing AsPC-1 cells caused increased gemcitabine resistance. Importantly, HSP27 expression was inducible in pancreatic cancer cell lines as well as primary cells. Taken together, our study suggests a role for HSP27 as a prognostic and predictive marker in pancreatic cancer. Assessment of HSP27 expression could thus facilitate the identification of specific patient subpopulations that might benefit from individualized treatment options. Additional studies need to clarify whether modulation of HSP27 expression could represent an attractive concept to support the incorporation of hyperthermia in clinical treatment protocols for pancreatic cancer.  相似文献   

2.
Gemcitabine has been shown to ameliorate disease related symptoms and to prolong overall survival in pancreatic cancer.Yet, resistance to Gemcitabine is commonly observed in this tumour entity and has been linked to increased expression of anti-apoptotic bcl-2. We therefore investigated if and to what extend silencing of bcl-2 by specific siRNAs (siBCL2) might enhance Gemcitabine effects in human pancreatic carcinoma cells. siBCL2 was transfected into the pancreatic cancer cell line YAP C alone and 72 hrs before co-incubation with different concentrations of Gemcitabine. Total protein and RNA were extracted for Western-blot analysis and quantitative polymerase chain reaction. Pancreatic cancer xenografts in male nude mice were treated intraperitoneally with siBCL2 alone, Gemcitabine and control siRNA or Gemcitabine and siBCL2 for 21 days. Combination of both methods lead to a synergistic induction of apoptosis at otherwise ineffective concentrations of Gemcitabine. Tumour growth suppression was also potentiated by the combined treatment with siBCL2 and Gemcitabine in vivo and lead to increased TUNEL positivity. In contrast, non-transformed human foreskin fibroblasts showed only minor responses to this treatment. Our results demonstrate that siRNA-mediated silencing of anti-apoptotic bcl-2 enhances chemotherapy sensitivity in human pancreatic cancer cells in vitro and might lead to improved therapy responses in advanced stages of this disease.  相似文献   

3.
Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856–61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.  相似文献   

4.
1. 1. We examined rodent cells transfected with an expression plasmid encoding a human small heat shock protein for possible compensatory expression of endogenous heat shock genes. For these investigations, human hsp27 was transfected into CHO cells which express endogenous HSP25.
2. 2. Both endogenous HSP25 and transfected HSP27 were expressed and multiple phosphorylated isoforms were detected upon exposure to thermal stress.
3. 3. Levels of endogenous HSP70 and HSP25 did not appear to be altered by expression of the heterologous heat shock protein.
4. 4. These results suggest that compensatory interactions are not exhibited in the expression of the heat shock genes examined, and that independent regulation may exist not only between the large and small heat shock proteins, but also between individual small heat shock proteins as well.
  相似文献   

5.
6.
RAS mutations or its activation by upstream receptor tyrosine kinases are frequently associated with poor response of carcinomas to chemotherapy. The 18 kDa propeptide domain of lysyl oxidase (LOX‐PP) released from the secreted precursor protein (Pro‐LOX) has been shown to inhibit RAS signaling and the transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in culture, and formation of tumors by Her‐2/neu‐driven breast cancer cells in a mouse xenograft model. Here, we tested the effects of LOX‐PP on MIA PaCa‐2 pancreatic cancer cells, driven by mutant RAS. In MIA PaCa‐2 cells in culture, LOX‐PP attenuated the ERK and AKT activities and decreased the levels of the NF‐κB p65 and RelB subunits and cyclin D1, which are activated by RAS signaling. In mouse xenograft growth, LOX‐PP reduced growth of tumors by these pancreatic cancer cells, and the nuclear levels of the p65 NF‐κB subunit and cyclin D1 proteins. While biological agents attenuate tumor growth when used alone, often they have additive or synergistic effects when used in combination with chemotherapeutic agents. Thus, we next tested the hypotheses that LOX‐PP sensitizes pancreatic and breast cancer cells to the chemotherapeutic agent doxorubicin. Purified LOX‐PP enhanced the cytotoxic effects of doxorubicin in pancreatic and breast cancer cells, as judged by ATP production, Cell Death ELISA assays, caspase 3 activation, PARP cleavage, and Annexin V staining. Thus, LOX‐PP potentiates the cytotoxicity of doxorubicin on breast and pancreatic cancer cells, warranting additional studies with a broader spectrum of current cancer treatment modalities. J. Cell. Biochem. 111: 1160–1168, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis. These authors contributed equally to this work.  相似文献   

8.
The technique of fine needle aspiration (FNA) is increasingly used in the investigation of breast abnormalities both palpable and impalpable. However, up to 20% of aspirates fall into two categories which require further investigation, because they either show cytological atypia or exhibit features which are suspicious of malignancy (reporting categories C3 and C4). The usefulness of the 27-kD heat shock protein (HSP27) expression in refining these categories of suspicion, and possibly in predicting malignancy, was investigated using an established immunocytochemical staining procedure. Positive HSP27 staining was shown by 73.1% of C4 and 33.3% of C3 FNAs. Statistical analysis showed a significant difference between the results obtained for the C3 and C4 FNAs.  相似文献   

9.
Exposure to ultraviolet (UV) light poses a health risk for eye disease, and solar ultraviolet in the B range (UVB, 280-320 nm) is known to be related to various corneal disorders. In this study, we investigated whether pre-conditioning of cells with arsenite (AsO2(-1)) can reduce UVB-induced apoptosis in human corneal epithelial cells, and whether the anti-apoptotic activity of 27 kDa heat shock protein (HSP27), a small heat shock protein, plays a role in this protection. UVB at levels comparable to physiologic solar exposure induces apoptosis of corneal epithelial cells in culture, demonstrated by activation of caspase 9 and caspase 3, and DNA fragmentation. When cells were pre-conditioned with arsenite prior to UVB exposure, the UVB-induced cell death was reduced, and UVB-induced activation of caspases and DNA fragmentation was inhibited. When cells were pre-treated with SB 203580, which inhibits HSP27 phosphorylation through inhibition of p38 MAP kinase activation, the arsenite-induced reduction of UVB-induced apoptosis was partially reversed. Arsenite pre-conditioning inhibited UVB-induced apoptosis in a two-phase pattern, which was temporally correlated with arsenite-induced HSP27 expression and phosphorylation. Neutralization of intracellular HSP27 with its antibody reduced arsenite's inhibition of UVB-induced caspase3 activation. Our results suggest that forms of stress that upregulate HSP27 and its phosphorylation may be useful as novel approaches to prevent adverse ocular effects arising from UV exposure in humans.  相似文献   

10.
Gemcitabine is the standard-of-care for chemotherapy in patients with pancreatic adenocarcinoma and it can directly incorporate into DNA or inhibit ribonucleotide reductase to prevent DNA replication and, thus, tumor cell growth. Most pancreatic tumors, however, develop resistance to gemcitabine. Polo-like kinase 1 (Plk1), a critical regulator in many cell cycle events, is significantly elevated in human pancreatic cancer. In this study, we show that Plk1 is required for the G1/S transition and that inhibition of Plk1 significantly reduces the DNA synthesis rate in human pancreatic cancer cells. Furthermore, the combined effect of a specific Plk1 inhibitor GSK461364A with gemcitabine was examined. We show that inhibition of Plk1 significantly potentiates the anti-neoplastic activity of gemcitabine in both cultured pancreatic cancer cells and Panc1-derived orthotopic pancreatic cancer xenograft tumors. Overall, our study demonstrates that co-targeting Plk1 can significantly enhance the efficacy of gemcitabine, offering a promising new therapeutic option for the treatment of gemcitabine-resistant human pancreatic cancer.  相似文献   

11.
HSP27 is a member of the small HSP family which has been linked to different signaling pathways regulating critical cellular functions. But the role of HSP27 in LPS-induced inflammatory signaling pathways is still unclear. In the present study, both overexpression and RNA interference experiments indicated that HSP27 increased LPS-induced expression of iNOS and COX-2 and release of NO/PGE2 through enhancing NF-κB but not MAPK activation. The effects of HSP27 on LPS-induced iNOS/COX-2 expression and relative signaling cascade were closely related with the phosphorylation of HSP27. Further studies have shown that HSP27-regulated LPS-induced activation of NF-κB by interacting with TRAF6 and increasing the association of TRAF6-IKKγ. This could be a probable mechanism by which HSP27 modulates LPS-induce inflammatory signaling pathways. Thus, HSP27 may play a potential role in regulating inflammatory responses in immunologic system.  相似文献   

12.
Pancreatic cancer (PC) remains a primary cause of cancer‐related deaths worldwide. Existing literature has highlighted the oncogenic role of microRNA‐27a (miR‐27a) in multiple cancers. Hence, the current study aimed to clarify the potential therapeutic role of PC cell–derived exosomal miR‐27a in human microvascular endothelial cell (HMVEC) angiogenesis in PC. Initially, differentially expressed genes (DEGs) and miRs related to PC were identified by microarray analysis. Microarray analysis provided data predicting the interaction between miR‐27a and BTG2 in PC, which was further verified by the elevation or depletion of miR‐27a. Next, the expression of miR‐27a and BTG2 in the PC tissues was quantified. HMVECs were exposed to exosomes derived from PC cell line PANC‐1 to investigate the effects associated with PC cell–derived exosomes carrying miR‐27a on HMVEC proliferation, invasion and angiogenesis. Finally, the effect of miR‐27a on tumorigenesis and microvessel density (MVD) was analysed after xenograft tumour inoculation in nude mice. Our results revealed that miR‐27a was highly expressed, while BTG2 was poorly expressed in both PC tissues and cell lines. miR‐27a targeted BTG2. Moreover, miR‐27a silencing inhibited PC cell proliferation and invasion, and promoted apoptosis through the elevation of BTG2. The in vitro assays revealed that PC cell–derived exosomes carrying miR‐27a stimulated HMVEC proliferation, invasion and angiogenesis, while this effect was reversed in the HMVECs cultured with medium containing GW4869‐treated PANC‐1 cells. Furthermore, in vivo experiment revealed that miR‐27a knockdown suppressed tumorigenesis and MVD. Taken together, cell‐derived exosomes carrying miR‐27a promotes HMVEC angiogenesis via BTG2 in PC.  相似文献   

13.
Combination chemotherapy by means of two or more drugs is prone to suppressing or discouraging the inception of multidrug resistance, exploiting the fact that diverse drugs act in different points of the cellular cycle of amplifying tumor cells. For example, the combination of gemcitabine (GMC) with quercetin (QCT) showed a synergistic effect in inhibiting the migration of pancreatic cancer cells. Consequently, herein GMC and QCT have been loaded within biodegradable nanoparticles (NPs) based on poly(lactic-co-glycolic acid), externally decorated with hyaluronic acid (HA; viz., PPHA NPs), which plays a major role in drug targeting to tumors due to its ability to specifically interact with CD44 receptor, that is overexpressed in many tumors. The produced HA-decorated NPs loaded with GMC and QCT showed an improved cytotoxicity and cellular uptake toward two cell lines of pancreatic ductal adenocarcinoma, namely Mia-PaCa-2 and PANC-1, compared with both the bare drugs and the drugs loaded in NPs which do not expose HA on the surface. HA-decorated NPs were also able to improve the anti-inflammatory properties of QCT, therefore leading to a decrease of interleukin cellular levels in both cell lines, preliminarily stimulated with lipopolysaccharides. This result is of special interest also considering the crucial role of interleukins in progression, metastatic processes, and drug resistance of human pancreas cancer cells.  相似文献   

14.
Evodiamine has therapeutic potential against cancers. This study was designed to investigate whether combination therapy with gemcitabine and evodiamine enhanced antitumor efficacy in pancreatic cancer. In vitro application of the combination therapy triggered significantly higher frequency of pancreatic cancer cells apoptosis, inhibited the activities of PI3K, Akt, PKA, mTOR and PTEN, and decreased the activation of NF-κB and expression of NF-κB-regulated products. In vivo application of the combination therapy induced significant enhancement of tumor cell apoptosis, reductions in tumor volume, and inhibited activation of mTOR and PTEN. In conclusion, evodiamine can augment the therapeutic effect of gemcitabine in pancreatic cancer through direct or indirect negative regulation of the PI3K/Akt pathway.  相似文献   

15.
Hippocampus is one of the most vulnerable tissues to glucocorticoid (GC). In the present study, we demonstrate that dexamethasone (DEX), a synthetic GC, induces apoptotic cell death in hippocampal progenitor HiB5 cells without any additional insult. Interestingly, expression of 27-kDa heat shock protein (HSP27) was markedly induced by DEX in time- and dose-dependent manners. This induction was dependent on the production of reactive oxygen species (ROS), suggesting that DEX-evoked oxidative damage to HiB5 cells is responsible for the HSP27 induction. To evaluate a possible role of HSP27, we generated two mutant HiB5 cell lines, in which expression of HSP27 was inhibited or enhanced by the over-expression of HSP27 cDNA with antisense or sense orientation (AS-HSP27 and S-HSP27, respectively). DEX-induced apoptotic cell population was significantly increased in AS-HSP27 HiB5 cells and evidently decreased in S-HSP27 cells. These results indicate that HSP27 protects hippocampal progenitor cells from GC-induced apoptotic cell death.  相似文献   

16.
Checkpoint kinase 2 (CHK2) plays pivotal function as an effector of cell cycle checkpoint arrest following DNA damage. Recently, we found that co‐treatment of NSC109555 (a potent and selective CHK2 inhibitor) potentiated the cytotoxic effect of gemcitabine (GEM) in pancreatic cancer MIA PaCa‐2 cells. Here, we further examined whether NSC109555 could enhance the antitumour effect of GEM in pancreatic adenocarcinoma cell lines. In this study, the combination treatment of NSC109555 plus GEM demonstrated strong synergistic antitumour effect in four pancreatic cancer cells (MIA PaCa‐2, CFPAC‐1, Panc‐1 and BxPC‐3). In addition, the GEM/NSC109555 combination significantly increased the level of intracellular reactive oxygen species (ROS), accompanied by induction of apoptotic cell death. Inhibition of ROS generation by N‐acetyl cysteine (NAC) significantly reversed the effect of GEM/NSC109555 in apoptosis and cytotoxicity. Furthermore, genetic knockdown of CHK2 by siRNA enhanced GEM‐induced apoptotic cell death. These findings suggest that inhibition of CHK2 would be a beneficial therapeutic approach for pancreatic cancer therapy in clinical treatment.  相似文献   

17.
Previously we reported that eight proteins were reproducibly induced in postimplantation rat embryos exposed to a brief heat shock (43°C, 15 min). The major heat-inducible rat embryo protein has now been identified as heat shock protein 72 (Hsp 72). In addition, the induction of Hsp 72 is temporally correlated with induction of thermotolerance. One of the other rat embryo proteins previously shown to be induced by elevated temperature is a heat shock protein of approximately 27 kilodaltons (Hsp 27). In this report we show that this protein is recognized by an antibody directed against a conserved peptide sequence of Hsp 27. Unlike Hsp 72, Hsp 27 is constitutively expressed in the rat embryo in the absence of any thermal stress; however, the level of Hsp 27 is increased approximately 2–3-fold after thermal stress (43°C, 10 min). Immunohistochemical analysis revealed that the constitutively expressed Hsp 27 is localized primarily to cells of the heart, cells that are uniquely resistant to the cytotoxic effects of hyperthermia. After thermal stress, Hsp 27 is expressed in all tissues of the embryo. Finally, our data show that Hsp 27 exists in the rat embryo as three major isoforms indicative of different phosphorylation states. Furthermore, most Hsp 27 in the heart is phosphorylated, whereas in the rest of the embryo, nonphosphorylated Hsp 27 predominates. After thermal stress, levels of phosphorylated isoforms increase dramatically in nonheart tissues of the embryo. Together, these results suggest that Hsp 27 may play a role in the development of thermotolerance in the postimplantation mammalian embryo. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The beneficial effects of light‐emitting diode (LED) irradiation have been reported in various pathologies, including cancer. However, its effect in pancreatic cancer cells remains unclear. Herein, we demonstrated that blue LED of 460 nm regulated pancreatic cancer cell proliferation and apoptosis by suppressing the expression of apoptosis‐related factors, such as mutant p53 and B‐cell lymphoma 2 (Bcl‐2), and decreasing the expression of RAC‐β serine/threonine kinase 2 (AKT2), the phosphorylation of protein kinase B (AKT), and mammalian target of rapamycin (mTOR). Blue LED irradiation also increased the levels of cleaved poly‐(ADP‐ribose) polymerase (PARP) and caspase‐3 in pancreatic cancer cells, while it suppressed AKT2 expression and inhibited tumor growth in xenograft tumor tissues. In conclusion, blue LED irradiation suppressed pancreatic cancer cell and tumor growth by regulating AKT/mTOR signaling. Our findings indicated that blue LEDs could be used as a nonpharmacological treatment for pancreatic cancer.  相似文献   

19.
Trophoblast cells from placental explants differentiate in culture to extravillous trophoblast cells (EVT cells). During trophoblast differentiation heat-shock-protein-27 (HSP27) mRNA and multidrug-resistance-protein-5 (MRP5, transporter of cyclic nucleotides) expression are increased. HSP27 is a regulator of actin filaments structure and dynamic, has a role in cell differentiation and may affect NF-kB activity. In this study we aimed to assess HSP27 level in trophoblast cells and its correlation with motility and differentiation related processes [MMPs activity, nitric oxide (NO), inducible nitric oxide synthase (iNOS), proliferation and MRP5 levels]. We evaluated HSP27 expression in a first trimester human trophoblast explants model designed to assess EVT cells differentiation/migration with/without 6-mercaptopurine (6MP, an EVT inhibitor of migration). We found that HSP27 level is expressed in the nucleous and cytoplasm of non-proliferting villous-trophoblast cells (negative for Ki67) and in the cell periphery and cytoplasm of motile EVT cells. Moreover, 6MP decreased HSP27 nucleous expression that was associated with inhibited MMP2 activity and NO production. Also decreased iNOS expression and increased MRP5 mRNA levels were observed. In conclusion, HSP27 expression is modulated in concordance with migration dependent parameters in trophoblast cells.  相似文献   

20.
Lee CH  Hong HM  Chang YY  Chang WW 《Biochimie》2012,94(6):1382-1389
Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and its expression has been reported to be associated with poor prognosis of breast cancer. Cancer stem cells (CSCs) are particular subtypes of cells in cancer which have been demonstrated to be important to tumor initiation, drug resistance and metastasis. In breast cancer, breast CSCs (BCSCs) are identified as CD24-CD44 + cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Although the clinical trials of Hsp90 inhibitors in breast cancer therapy are ongoing, the BCSC targeting effect of them remains unclear. In the present study, we discovered that the expression of Hsp90α was increased in ALDH + human breast cancer cells. Geldanamycin (GA), a Hsp90 inhibitor, could suppress ALDH + breast cancer cells in a dose dependent manner. We are interesting in the insufficiently inhibitory effect of low dose GA treatment. It was correlated with the upregulation of Hsp27 and Hsp70. By co-treatment with HSP inhibitors, quercetin or KNK437 potentiated BCSCs, which determined with ALDH+ population or mammosphere cells, toward GA inhibition, as well as anti-proliferation and anti-migration effects of GA. With siRNA mediated gene silencing, we found that knockdown of Hsp27 could mimic the effect of HSP inhibitors to potentiate the BCSC targeting effect of GA. In conclusion, combination of HSP inhibitors with Hsp90 inhibitors could serve as a potential solution to prevent the drug resistance and avoid the toxicity of high dose of Hsp90 inhibitors in clinical application. Furthermore, Hsp27 may play a role in chemoresistant character of BCSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号