首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

2.
Proliferative vitreoretinopathy (PVR) is a blinding eye disease. Epithelial‐mesenchymal transition (EMT) of RPE cells plays an important role in the pathogenesis of PVR. In the current study, we sought to investigate the role of the methyl‐CpG‐binding protein 2 (MeCP2), especially P‐MeCP2‐421 in the pathogenesis of PVR. The expressions of P‐MeCP2‐421, P‐MeCP2‐80, PPAR‐γ and the double labelling of P‐MeCP2‐421 with α‐SMA, cytokeratin, TGF‐β and PPAR‐γ in human PVR membranes were analysed by immunohistochemistry. The effect of knocking down MeCP2 using siRNA on the expressions of α‐SMA, phospho‐Smad2/3, collagen I, fibronectin and PPAR‐γ; the expression of α‐SMA stimulated by recombinant MeCP2 in ARPE‐19; and the effect of TGF‐β and 5‐AZA treatment on PPAR‐γ expression were analysed by Western blot. Chromatin immunoprecipitation was used to determine the binding of MeCP2 to TGF‐β. Our results showed that P‐MeCP2‐421 was highly expressed in PVR membranes and was double labelled with α‐SMA, cytokeratin and TGF‐β, knocking down MeCP2 inhibited the activation of Smad2/3 and the expression of collagen I and fibronectin induced by TGF‐β. TGF‐β inhibited the expression of PPAR‐γ, silence of MeCP2 by siRNA or using MeCP2 inhibitor (5‐AZA) increased the expression of PPAR‐γ. α‐SMA was up‐regulated by the treatment of recombinant MeCP2. Importantly, we found that MeCP2 bound to TGF‐β as demonstrated by Chip assay. The results suggest that MeCP2 especially P‐MeCP2‐421 may play a significant role in the pathogenesis of PVR and targeting MeCP2 may be a potential therapeutic approach for the treatment of PVR.  相似文献   

3.
Epithelial–mesenchymal transition (EMT), via activation of Wnt signaling, is prevailing in embryogenesis, but postnatally it only occurs in pathological processes, such as in tissue fibrosis and tumor metastasis. Our prior studies led us to speculate that EMT might be involved in the loss of limbal epithelial stem cells in explant cultures. To examine this hypothesis, we successfully grew murine corneal/limbal epithelial progenitors by prolonging the culture time and by seeding at a low density in a serum‐free medium. Single cell‐derived clonal growth was accompanied by a gradient of Wnt signaling activity, from the center to the periphery, marked by a centrifugal loss of E‐cadherin and β‐catenin from intercellular junctions, coupled with nuclear translocation of β‐catenin and LEF‐1. Large‐colony‐forming efficiency at central location of colony was higher than peripheral location. Importantly, there was also progressive centrifugal differentiation, with positive K14 keratin expression and the loss of p63 and PCNA nuclear staining, and irreversible EMT, evidenced by cytoplasmic expression of α‐SMA and nuclear localization of S100A4; and by nuclear translocation of Smad4. Furthermore, cytoplasmic expression of α‐SMA was promoted by high‐density cultures and their conditioned media, which contained cell density‐dependent levels of TGF‐β1, TGF‐β2, GM‐CSF, and IL‐1α. Exogenous TGF‐β1 induced α‐SMA positive cells in a low‐density culture, while TGF‐β1 neutralizing antibody partially inhibited α‐SMA expression in a high‐density culture. Collectively, these results indicate that irreversible EMT emerges in the periphery of clonal expansion where differentiation and senescence of murine corneal/limbal epithelial progenitors occurs as a result of Smad‐mediated TGF‐β‐signaling. J. Cell. Physiol. 228: 225–234, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
EZH2, a histone H3 lysine‐27‐specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway‐stimulated fibroblasts in vitro and in vivo by repressing Dkk‐1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4‐induced rat liver and primary HSCs as well as TGF‐β1‐treated HSC‐T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF‐β1‐induced proliferation of HSC‐T6 cells and the expression of α‐SMA. In addition, knockdown of Dkk1 promoted TGF‐β1‐induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk‐1 through trimethylation of H3K27me3 in TGF‐β1‐treated HSC‐T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2‐mediated repression of Dkk1 promotes the activation of Wnt/β‐catenin pathway, which is an essential event for HSC activation.  相似文献   

5.
Cardiac fibrosis is a major cause of heart failure. MicroRNAs (miRs) are important epigenetic regulators of cardiac function and cardiovascular diseases, including cardiac fibrosis. This study aimed to explore the role of miR‐503 and its mechanisms in regulating cardiac fibrosis. miR‐503 was found up‐regulated in the mouse LV tissues subjected to transverse aortic constriction (TAC) and in neonatal cardiac fibroblasts (CFs) cultured with Angiotension II. The role of miR‐503 in regulating CF cell proliferation and/or collagen production in mice neonatal CFs were determined using an MTT assay and RT‐PCR respectively. Forced expression of miR‐503 increased the cellular proliferation and collagen production in mice neonatal CFs. The effects were abrogated by cotransfection with AMO‐503 (a specific inhibitor of miR‐503). Injection of antagomiR‐503 elevated cardiac function and inhibited the expression of connective tissue growth factor (CTGF) and transforming growth factor (TGF)‐β in the TAC mice. Additional analysis revealed that Apelin‐13 is a direct target of miR‐503, as the overexpression of miR‐503 decreased the protein and mRNA expression levels of Apelin‐13. In the CFs with pre‐treatment of AngII, we transfected AMO‐503 into the cells treated with siRNA‐APLN. siRNA‐APLN abolished the effects of AMO‐503 on the production of collagen I and III and the expression of TGF‐β and CTGF. Furthermore, pre‐treatment of CFs with Apelin‐13 (1–100 nmol/l) inhibited angiotensin II‐mediated collagen production and activation of CTGF and TGF‐β. So we conclude that miR‐503 promotes cardiac fibrosis via miR‐503‐Apelin‐13‐TGF‐β‐CTGF‐collagen production pathway. Thus, miR‐503 is a promising therapeutic target for reducing cardiac fibrosis.  相似文献   

6.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

7.
In this study, temporal and spatial distribution of three TGF‐β isoforms and their downstream signaling pathways including pSmad2 and p38MAPK were examined during fibrotic wound repair. In normal chick corneas, TGF‐β1, ‐2, and ‐3 were weakly detected in Bowman's layer (BL). In healing corneas, TGF‐β1 was primarily deposited in the fibrin clot and the unwounded BL. TGF‐β2 was highly expressed in healing epithelial and endothelial cells, and numerous active fibroblasts/myofibroblasts. TGF‐β3 was mainly detected in the unwound region of basal epithelial cells. α‐Smooth muscle actin (α‐SMA) was initially appeared in the posterior region of repairing stroma at day 3, and was detected in the entire healing stroma by day 7. Notably, α‐SMA was absent in the central region of healing stroma by day 14, and its staining pattern was similar to those of TGF‐β2 and p38MAPK. By contrast, pSmad2 was mainly detected in the fibroblasts. In normal cornea, laminin was mainly detected in both epithelial basement membrane (BM) and Descemet's membrane (DM). By contrast to reconstitution of the BM in the wound region, the DM was not repaired although endothelial layer was regenerated, indicating that high levels of TGF‐β2 were released into the posterior region of healing stroma on day 14. High levels of α‐SMA staining, shown in cultured repair stromal cells from healing corneas on day 14 and in TGF‐β2 treated normal stromal cells, were significantly reduced by p38MAPK inhibition. Collectively, this study suggests that TGF‐β2‐mediated myofibroblast transformation is mediated, at least partly, by the p38MAPK pathway in vivo. J. Cell. Biochem. 108: 476–488, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G‐protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs was detected by real‐time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15‐week‐old apoE knockout mice. Compared to wild‐type mice, RGS3 expression was lower while α‐SMA, TGF‐β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs derived from apoE(?/?) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF‐β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.  相似文献   

11.
Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR‐21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF‐β1, miR‐21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF‐β1 induced the up‐regulation of miR‐21 and down‐regulation of Jagged1 in rat CFs. Luciferase assay showed that miR‐21 targeted 3′‐UTR of Jagged1 in rat CFs. miR‐21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF‐β1. Furthermore, these effects of miR‐21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR‐21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR‐21 promotes cardiac fibroblast‐to‐myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR‐21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.  相似文献   

12.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis.  相似文献   

13.
Endochondral ossification is characterized by a significant interdependence between cell shape and cytoskeletal organization that accompanies the onset of chondrogenic signaling. However, the mechanisms mediating these interactions have not been well studied. Here, treatment with transforming growth factor (TGF)‐β3 at a later stage of chondrogenesis led to activation of Smad‐2 signaling and the formation of intense stress fibers, which resulted in suppressing chondrogenic differentiation of leg bud mesenchymal cells. Moreover, specific siRNA knockdown of Smad‐2 reduced TGF‐β3‐induced stress fibers via physical interactions with β‐catenin. In conclusion, our results indicate that TGF‐β3‐induced Smad signaling, in conjunction with β‐catenin, is involved in the reorganization of the actin cytoskeleton into a cortical pattern with a concomitant rounding of cells. J. Cell. Biochem. © 2009 Wiley‐Liss, Inc. This article was published online on 28 May 2009. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 8 June 2009. J. Cell. Biochem. 107: 622–629, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
In this study, we determined whether multilineage‐differentiating stress‐enduring (Muse) cells exist in rat bone marrow and elucidated their effects on protection against the injury of intestinal epithelial cells associated with inflammation. Rat Muse cells were separated from bone marrow mesenchymal stem cells (BMMSCs) by trypsin‐incubation stress. The group of cells maintained the characteristics of BMMSCs; however, there were high positive expression levels of stage‐specific embryonic antigen‐3 (SSEA‐3; 75.6 ± 2.8%) and stage‐specific embryonic antigen‐1 (SSEA‐1; 74.8 ± 3.1%), as well as specific antigens including Nanog, POU class 5 homeobox 1 (OCT 3/4), and SRY‐box 2 (SOX 2). After inducing differentiation, α‐fetoprotein (endodermal), α‐smooth muscle actin and neurofilament medium polypeptide (ectodermal) were positive in Muse cells. Injuries of intestinal epithelial crypt cell‐6 (IEC‐6) and colorectal adenocarcinoma 2 (Caco‐2) cells as models were induced by tumor necrosis factor‐α stimulation in vitro. Muse cells exhibited significant protective effects on the proliferation and intestinal barrier structure, the underlying mechanisms of which were related to reduced levels of interleukin‐6 (IL‐6) and interferon‐γ (IFN‐γ), and the restoration of transforming growth factor‐β (TGF‐β) and IL‐10 in the inflammation microenvironment. In summary, there were minimal levels of pluripotent stem cells in rat bone marrow, which exhibit similar properties to human Muse cells. Rat Muse cells could provide protection against damage to intestinal epithelial cells depending on their anti‐inflammatory and immune regulatory functionality. Their functional impact was more obvious than that of BMMSCs.  相似文献   

15.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

16.
Mesenchymal stem cells (MSCs) have been investigated to treat liver diseases, but the efficiency of MSCs to treat chronic liver diseases is conflicting. FGF21 can reduce inflammation and fibrosis. We established FGF21‐secreting adipose derived stem cells (FGF21_ADSCs) to enhance the effects of ADSCs and transplanted them into thioacetamide (TAA)‐induced liver fibrosis mice via the tail vein. Transplantation of FGF21_ADSCs significantly improved liver fibrosis by decreasing serum hyaluronic acid and reducing the expression of fibrosis‐related factors such as α‐smooth muscle actin (α‐SMA), collagen and tissue inhibitor of metalloproteinase‐1 (TIMP‐1) compared with the Empty_ADSCs by inhibition of p‐JNK, NF‐κB and p‐Smad2/3 signalling. α‐lactoalbumin (LA) and lactotransferrin (LTF), secretory factors produced from FGF21_ADSCs inhibited TGF‐β1‐induced expression of α‐SMA and collagen in LX‐2 cells. These results suggest that transplantation of FGF21_ADSCs inhibited liver fibrosis more effectively than Empty_ADSCs, possibly via secretion of α‐LA and LTF.  相似文献   

17.
18.
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α‐smooth muscle actin (α‐SMA)‐expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β‐subunits β1, β5, β6, β8 are up‐regulated concomitant with α‐SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up‐regulated the expression of α‐SMA, β1‐integrin, fibronectin, tenascin‐C and transforming growth factor beta (TGF‐β)–induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up‐regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF‐β activation as αV integrin null lenses do not exhibit detectable SMAD‐3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF‐β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.  相似文献   

19.
20.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号