首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio‐functions. However, with recent increasing reports regarding TCs alterations in disease‐affected tissues, there is still lack of evidence about TCs involvement in AS‐affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS‐affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3‐D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX‐2, suggested mechanism of inflammatory‐induced TCs damage. Consequently, TCs damage might contribute to AS‐induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC‐specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs‐mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3‐D network and impaired mechanical support for TCs‐mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local inflammatory process/ immunoregulation and possibly immune‐mediated early pregnancy failure.  相似文献   

2.
Liver fibrosis is a wound‐healing response which engages a variety of cell types to encapsulate injury. Telocyte (TC), a novel type of interstitial cell, has been identified in a variety of tissues and organs including liver. TCs have been reported to be reduced in fibrotic areas after myocardial infarction, human interstitial wall's fibrotic remodelling caused either by ulcerative colitis or Crohn's disease, and skin of systemic sclerosis. However, the role of TCs in human liver fibrosis remains unclear. Liver samples from human liver biopsy were collected. All samples were stained with Masson's trichrome to determine fibrosis. TCs were identified by several immunofluorescence stainings including double labelling for CD34 and c‐kit/CD117, or vimentin, or PDGF Receptor‐α, or β. We found that hepatic TCs were significantly decreased by 27%–60% in human liver fibrosis, suggesting that loss of TCs might lead to the altered organization of extracellular matrix and loss the control of fibroblast/myofibroblast activity and favour the genesis of fibrosis. Adding TCs might help to develop effective and targeted antifibrotic therapies for human liver fibrosis.  相似文献   

3.
Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com ). Functionally, TCs form a three‐dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non‐pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders.  相似文献   

4.
The potential of stem cell (SC) therapies for eye diseases is well‐recognized. However, the results remain only encouraging as little is known about the mechanisms responsible for eye renewal, regeneration and/or repair. Therefore, it is critical to gain knowledge about the specific tissue environment (niches) where the stem/progenitor cells reside in eye. A new type of interstitial cell–telocyte (TC) ( www.telocytes.com ) was recently identified by electron microscopy (EM). TCs have very long (tens of micrometres) and thin (below 200 nm) prolongations named telopodes (Tp) that form heterocellular networks in which SCs are embedded. We found TCs by EM and electron tomography in sclera, limbus and uvea of the mouse eye. Furthermore, EM showed that SCs were present in the anterior layer of the iris and limbus. Adhaerens and gap junctions were found to connect TCs within a network in uvea and sclera. Nanocontacts (electron‐dense structures) were observed between TCs and other cells: SCs, melanocytes, nerve endings and macrophages. These intercellular ‘feet’ bridged the intercellular clefts (about 10 nm wide). Moreover, exosomes (extracellular vesicles with a diameter up to 100 nm) were delivered by TCs to other cells of the iris stroma. The ultrastructural nanocontacts of TCs with SCs and the TCs paracrine influence via exosomes in the epithelial and stromal SC niches suggest an important participation of TCs in eye regeneration.  相似文献   

5.
Telocyte (TC) as a special stromal cell exists in mammary gland and might play an important role in the balance of epithelium‐stroma of mammary gland. Considering that different types of breast interstitial cells influence the development and progression of breast cancer, TCs may have its distinct role in this process. We here studied the roles of TCs in the self‐assembly of reconstituted breast cancer tissue. We co‐cultured primary isolated TCs and other breast stromal cells with breast cancer EMT‐6 cells in collagen/Matrigel scaffolds to reconstitute breast cancer tissue in vitro. Using histology methods, we investigated the immunohistochemical characteristics and potential functions of TCs in reconstituted breast cancer tissue. TCs in primary mammary gland stromal cells with long and thin overlapping cytoplasmic processes, expressed c‐kit/CD117, CD34 and vimentin in reconstitute breast cancer tissue. The transmission electron microscopy showed that the telocyte‐like cells closely communicated with breast cancer cells as well as other stromal cells, and might serve as a bridge that directly linked the adjacent cells through membrane‐to‐membrane contact. Compared with cancer tissue sheets of EMT‐6 alone, PCNA proliferation index analysis and TUNEL assay showed that TCs and other breast stromal cells facilitated the formation of typical nest structure, promoted the proliferation of breast cancer cells, and inhibited their apoptosis. In conclusion, we successfully reconstituted breast cancer tissue in vitro, and it seems to be attractive that TCs had potential functions in self‐assembly of EMT‐6/stromal cells reconstituted breast cancer tissue.  相似文献   

6.
Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically ( www.telocytes.com ). Telocytes are distributed through organ stroma forming a three‐dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro‐angiogenic and stromal‐specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up‐ or down‐regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis.  相似文献   

7.
Telocytes (TCs) are a novel type of interstitial cells which are potentially involved in tissue regeneration and repair ( www.telocytes.com ). Previously, we documented the presence of TCs in liver. However, the possible roles of TCs in liver regeneration remain unknown. In this study, a murine model of partial hepatectomy (PH) was used to induce liver regeneration. The number of TCs detected by double labelling immunofluorescence methods (CD34/PDGFR‐α, CD34/PDGFR‐ß and CD34/Vimentin) was significantly increased when a high level of hepatic cell proliferation rate (almost doubled) as shown by 5‐ethynyl‐2′‐deoxyuridine (EdU) immunostaining and Western Blot of Proliferating cell nuclear antigen (PCNA) was found at 48 and 72 hrs post‐PH. Meanwhile, the number of CK‐19 positive‐hepatic stem cells peaked at 72 hrs post‐PH, co‐ordinating with the same time‐point, when the number of TCs was most significantly increased. Taken together, the results indicate a close relationship between TCs and the cells essentially involved in liver regeneration: hepatocytes and stem cells. It remains to be determined how TCs affect hepatocytes proliferation and/or hepatic stem cell differentiation in liver regeneration. Besides intercellular junctions, we may speculate a paracrine effect via ectovesicles.  相似文献   

8.
Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com ). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2‐D nano‐ESI LC‐MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two‐sample t‐test, P < 0.05) as up‐ or down‐regulated (fold change >2). We found that in TCs there are 38 up‐regulated proteins at the 5th day and 26 up‐regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up‐regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54‐fold) and von Willebrand factor (5.74‐fold). The 26 up‐regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down‐regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro‐proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.  相似文献   

9.
Telocytes (TCs), a distinct interstitial cell population, have been identified in the uterus, oviduct and placenta, with multiple proposed potential biological functions. Their unique structure allows them to form intercellular junctions with various immunocytes, both in normal and diseased tissues, suggesting a potential functional relationship with the local immune response. It has been hypothesized that through direct heterocellular junctions or indirect paracrine effects, TCs influence the activity of local immunocytes that are involved in the inflammatory process and in immune‐mediated reproductive abnormalities. However, no reliable cytological evidence for this hypothesis is currently available. In this study, we cultured primary murine uterine TCs and collected TC conditioned media (TCM). Mouse peritoneal macrophages (pMACs) were co‐cultured for 48 hrs with TCM or with DMEM/F12 or lipopolysaccharide (LPS) as negative and positive controls, respectively. Normal uterine TCs with a typical structure and a CD‐34‐positive/vimentin‐positive/c‐kit‐negative immunophenotype were observed during culture. Morphologically, TCM‐treated pMACs displayed an obvious activation/immunoresponse, in contrast to over‐stimulation and cell death after LPS treatment and no sign of activation in the presence of DMEM/F12. Accordingly, a cell counting kit 8 (CCK‐8) assay indicated significant activation of pMACs by TCM and LPS compared to DMEM/F12, thus supporting the marked morphological differences among these groups of cells. Furthermore, within a panel of macrophage‐derived cytokines/enzymes, interleukin‐6 (IL‐6) and inducible nitric oxide synthase were significantly elevated in TCM‐treated pMACs; tumour necrosis factor α, IL1‐R1, and IL‐10 were slightly, but significantly, up‐regulated; and no changes were observed for transforming growth factor‐β1, IL‐1β, IL‐23α and IL‐18. Our results indicate that TCs are not simply innocent bystanders but are rather functional players in the activation of pMACs; they trigger and maintain the immune response, likely through indirect paracrine effects. Thus, we provide preliminary in vitro evidence of immunoregulatory and immunosurveillance roles for TCs.  相似文献   

10.
Telocytes (TCs) are a novel type of interstitial cell of whom presence has been recently documented in many tissues and organs. However, whether TCs exists in bone marrow is still not reported. This study aims to find out TCs in mice bone marrow by using scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images showed that in mice bone marrow most of TCs have small spherical cell body (usually 4–6 μm diameter) with thin long telopodes (Tps; usually one to three). The longest Tp observed was about 70 μm, with an uneven calibre. Direct intercellular contacts exist between TCs. TEM shows mitochondria within dilations of Tps. Also, by TEM, we show the close spatial relations of Tps with blood vessels. In conclusion, this study provides ultrastructural evidence regarding the existence of TCs in mice bone marrow, in situ.  相似文献   

11.
Telocytes (TCs), a particular interstitial cell type, have been recently described in a wide variety of mammalian organs ( www.telocytes.com ). The TCs are identified morphologically by a small cell body and extremely long (tens to hundreds of μm), thin prolongations (less than 100 nm in diameter, below the resolving power of light microscopy) called telopodes. Here, we demonstrated with electron microscopy and immunofluorescence that TCs were present in human dermis. In particular, TCs were found in the reticular dermis, around blood vessels, in the perifollicular sheath, outside the glassy membrane and surrounding sebaceous glands, arrector pili muscles and both the secretory and excretory portions of eccrine sweat glands. Immunofluorescence screening and laser scanning confocal microscopy showed two subpopulations of dermal TCs; one expressed c‐kit/CD117 and the other was positive for CD34. Both subpopulations were also positive for vimentin. The TCs were connected to each other by homocellular junctions, and they formed an interstitial 3D network. We also found TCs adjoined to stem cells in the bulge region of hair follicles. Moreover, TCs established atypical heterocellular junctions with stem cells (clusters of undifferentiated cells). Given the frequency of allergic skin pathologies, we would like to emphasize the finding that close, planar junctions were frequently observed between TCs and mast cells. In conclusion, based on TC distribution and intercellular connections, our results suggested that TCs might be involved in skin homeostasis, skin remodelling, skin regeneration and skin repair.  相似文献   

12.
Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC‐specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC‐specific or TC‐dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T‐BL), and CD8+ T cells from lungs (T‐LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up‐ or down‐regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down‐expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down‐expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.  相似文献   

13.
Telocytes (TCs) form a cardiac network of interstitial cells. Our previous studies have shown that TCs are involved in heterocellular contacts with cardiomyocytes and cardiac stem/progenitor cells. In addition, TCs frequently establish 'stromal synapses' with several types of immunoreactive cells in various organs ( www.telocytes.com ). Using electron microscopy (EM) and electron microscope tomography (ET), we further investigated the interstitial cell network of TCs and found that TCs form 'atypical' junctions with virtually all types of cells in the human heart. EM and ET showed different junction types connecting TCs in a network (puncta adhaerentia minima, processus adhaerentes and manubria adhaerentia). The connections between TCs and cardiomyocytes are 'dot' junctions with nanocontacts or asymmetric junctions. Junctions between stem cells and TCs are either 'stromal synapses' or adhaerens junctions. An unexpected finding was that TCs have direct cell-cell (nano)contacts with Schwann cells, endothelial cells and pericytes. Therefore, ultrastructural analysis proved that the cardiac TC network could integrate the overall 'information' from vascular system (endothelial cells and pericytes), nervous system (Schwann cells), immune system (macrophages, mast cells), interstitium (fibroblasts, extracellular matrix), stem cells/progenitors and working cardiomyocytes. Generally, heterocellular contacts occur by means of minute junctions (point contacts, nanocontacts and planar contacts) and the mean intermembrane distance is within the macromolecular interaction range (10-30 nm). In conclusion, TCs make a network in the myocardial interstitium, which is involved in the long-distance intercellular signaling coordination. This integrated interstitial system appears to be composed of large homotropic zones (TC-TC junctions) and limited (distinct) heterotropic zones (heterocellular junctions of TCs).  相似文献   

14.
We studied the phagocytic‐like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic‐like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment‐loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c‐kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic‐like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic‐like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin‐storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic‐like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.  相似文献   

15.
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium ( www.telocytes.com ). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three‐dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB‐SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB‐SEM tomography confirms that they have long, narrow but flattened (ribbon‐like) telopodes, with humps generated by the podoms. FIB‐SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB‐SEM tomography of a human cell type.  相似文献   

16.
Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; www.telocytes.com ). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2‐dimensional nano‐electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano‐ESI LC‐MS/MS). Differentially expressed proteins were screened by two‐sample t‐test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up‐ or down‐regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up‐regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up‐regulated proteins e.g. myosin‐14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up‐regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow biomarker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.  相似文献   

17.
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR‐β (Platelet‐derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR‐α (Platelet‐derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR‐α in primary culture. CD34/PDGFR‐α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC‐enriched culture of rat cardiac interstitial cells were positive for PDGFR‐α, while CD34/PDGFR‐α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR‐α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.  相似文献   

18.
Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise‐induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet‐derived growth factor (PDGF) receptor‐α and CD34/PDGF receptor‐β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal.  相似文献   

19.
Systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of the skin and various internal organs. In SSc, telocytes, a peculiar type of stromal (interstitial) cells, display severe ultrastructural damages and are progressively lost from the clinically affected skin. The aim of the present work was to investigate the presence and distribution of telocytes in the internal organs of SSc patients. Archival paraffin‐embedded samples of gastric wall, myocardium and lung from SSc patients and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were studied on tissue sections subjected to CD34 immunostaining. CD34/CD31 double immunofluorescence was performed to unequivocally differentiate telocytes (CD34‐positive/CD31‐negative) from vascular endothelial cells (CD34‐positive/CD31‐positive). Few telocytes entrapped in the fibrotic extracellular matrix were found in the muscularis mucosae and submucosa of SSc gastric wall. In the muscle layers and myenteric plexus, the network of telocytes was discontinuous or even completely absent around smooth muscle cells and ganglia. Telocytes were almost completely absent in fibrotic areas of SSc myocardium. In SSc fibrotic lung, few or no telocytes were observed in the thickened alveolar septa, around blood vessels and in the interstitial space surrounding terminal and respiratory bronchioles. In SSc, the loss of telocytes is not restricted to the skin, but it is a widespread process affecting multiple organs targeted by the fibrotic process. As telocytes are believed to be key players in the regulation of tissue/organ homoeostasis, our data suggest that telocyte loss might have important pathophysiological implications in SSc.  相似文献   

20.
A novel type of interstitial tissue cells in the biliary tree termed telocytes (TCs), formerly known as interstitial Cajal‐like cells (ICLCs), exhibits very particular features which unequivocally distinguish these cells from interstitial cells of Cajal (ICCs) and other interstitial cell types. Current research substantiates the existence of TCs and ICCs in the biliary system (gallbladder, extrahepatic bile duct, cystic duct, common bile duct and sphincter of Oddi). Here, we review the distribution, morphology and ultrastructure of TCs and ICCs in the biliary tree, with emphasis on their presumptive roles in physiological and pathophysiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号