首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer is one of the leading causes of death in men aged 40 to 55. Genistein isoflavone (4′, 5′, 7‐trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti‐tumour activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA‐approved chemotherapy drug, primarily used for secondary treatment of ovarian, cervical and small cell lung cancers. This study was to demonstrate the potential anticancer efficacy of genistein‐topotecan combination in LNCaP prostate cancer cells and the mechanism of the combination treatment. The LNCaP cells were grown in complete RPMI medium, and cultured at 37°C, 5% CO2 for 24–48 hrs to achieve 70–90% confluency. The cells were treated with varying concentrations of genistein, topotecan and genistein‐topotecan combination and incubated for 24 hrs. The treated cells were assayed for (i) post‐treatment sensitivity using MTT assay and DNA fragmentation, (ii) treatment‐induced apoptosis using caspase‐3 and ‐9 binding assays and (iii) treatment‐induced ROS generation levels. The overall data indicated that (i) both genistein and topotecan induce cellular death in LNCaP cells, (ii) genistein‐topotecan combination was significantly more efficacious in reducing LNCaP cell viability compared with either genistein or topotecan alone, (iii) in all cases, cell death was primarily through apoptosis, via the activation of caspase‐3 and ‐9, which are involved in the intrinsic pathway, (iv) ROS generation levels increased significantly with the genistein‐topotecan combination treatment. Treatments involving genistein‐topotecan combination may prove to be an attractive alternative phytotherapy or adjuvant therapy for prostate cancer.  相似文献   

2.
Roburic acid (ROB) is a naturally occurred tetracyclic triterpenoid, and the anticancer activity of this compound has not been reported. Docetaxel (DOC) is the first-line chemotherapeutic agent for advanced stage prostate cancer but toxic side effects and drug resistance limit its clinical success. In this study, the potential synergistic anticancer effect and the underlying mechanisms of ROB in combination with DOC on prostate cancer were investigated. The results showed that ROB and DOC in combination synergistically inhibited the growth of prostate cancer cells. The combination also strongly induced apoptosis, and suppressed cell migration, invasion and sphere formation. Mechanistic study showed that the combined effects of ROB and DOC on prostate cancer cells were associated with inhibition of NF-κB activation, down regulation of Bcl-2 and up regulation of Bax. Knockdown of NF-κB by small interfering RNA (siRNA) significantly decreased the combined effect of ROB and DOC. Moreover, we found that esomeprazole (ESOM), a proton pump inhibitor (PPI), strongly enhanced the effectiveness of ROB and DOC on prostate cancer cells in acidic culture medium. Since acidic micro environment is known to impair the efficacy of current anticancer therapies, ESOM combined with ROB and DOC may be an effective approach for improving the treatment of prostate cancer patients.  相似文献   

3.
4.
Genetic inactivation of PTEN through either gene deletion or mutation is common in metastatic prostate cancer, leading to activation of the phosphoinositide 3-kinase (PI3K-AKT) pathway, which is associated with poor clinical outcomes. The PI3K-AKT pathway plays a central role in various cellular processes supporting cell growth and survival of tumor cells. To date, therapeutic approaches to develop inhibitors targeting the PI3K-AKT pathway have failed in both pre-clinical and clinical trials. We showed that a novel AKT inhibitor, AZD5363, inhibits the AKT downstream pathway by reducing p-MTOR and p-RPS6KB/p70S6K. We specifically reported that AZD5363 monotherapy induces G2 growth arrest and autophagy, but fails to induce significant apoptosis in PC-3 and DU145 prostate cancer cell lines. Blocking autophagy using pharmacological inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or genetic inhibitors (siRNA targeting ATG3 and ATG7) enhances cell death induced by AZD5363 in these prostate cancer cells. Importantly, the combination of AZD5363 with chloroquine significantly reduces tumor volume compared with the control group, and compared with either drug alone in prostate tumor xenograft models. Taken together, these data demonstrate that AKT inhibitor AZD5363, synergizes with the lysosomotropic inhibitor of autophagy, chloroquine, to induce apoptosis and delay tumor progression in prostate cancer models that are resistant to monotherapy, with AZD5363 providing a new therapeutic approach potentially translatable to patients.  相似文献   

5.
Metastatic prostate cancer resistant to hormonal manipulation is considered the advanced stage of the disease and leads to most cancer‐related mortality. With new research focusing on modulating cancer growth, it is essential to understand the biochemical changes in cells that can then be exploited for drug discovery and for improving responsiveness to treatment. Raman spectroscopy has a high chemical specificity and can be used to detect and quantify molecular changes at the cellular level. Collection of large data sets generated from biological samples can be employed to form discriminatory algorithms for detection of subtle and early changes in cancer cells. The present study describes Raman finger printing of normal and metastatic hormone‐resistant prostate cancer cells including analyses with principal component analysis and linear discrimination. Amino acid‐specific signals were identified, especially loss of arginine band. Androgen‐resistant prostate cancer cells presented a higher content of phenylalanine, tyrosine, DNA and Amide III in comparison to PNT2 cells, which possessed greater amounts of L‐arginine and had a B conformation of DNA. The analysis utilized in this study could reliably differentiate the 2 cell lines (sensitivity 95%; specificity 88%).   相似文献   

6.
Toll‐Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR‐expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen‐specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti‐ and pro‐tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy.  相似文献   

7.
8.
Tau is a microtubule‐associated protein whose function has been investigated primarily in neurons. Recently, tau expression has been correlated with increased drug resistance in various cancers of non‐neuronal tissues. In this report, we investigate the tau expressed in cancerous prostate lines ALVA‐31, DU 145, and PC‐3. Prostate cancer tau is heat‐stable and highly phosphorylated, containing many of the modifications identified in Alzheimer's disease brain tau. RT‐PCR and phosphatase treatment indicated that all six alternatively spliced adult brain tau isoforms are expressed in ALVA‐31 cells, and isoforms containing exon 6 as well as high molecular weight tau isoforms containing either exon 4A or a larger splice variant of exon 4A are also present. Consistent with its hyperphosphorylated state, a large proportion of ALVA‐31 tau does not bind to microtubules, as detected by confocal microscopy and biochemical tests. Finally, endogenous ALVA‐31 tau can interact with the p85 subunit of phosphatidylinositol 3‐kinase, as demonstrated by co‐immunoprecipitations and in vitro protein‐binding assays. Our results suggest that tau in prostate cancer cells does not resemble that from normal adult brain and support the hypothesis that tau is a multifunctional protein. J. Cell. Biochem. 108: 555–564, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Fibroblast growth factor 8 (FGF‐8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF‐8b on proliferation of PC‐3 prostate cancer cells and growth of PC‐3 tumors, and to identify FGF‐8b‐associated molecular targets. Expression of ectopic FGF‐8b in PC‐3 cells caused a 1.5‐fold increase in cell proliferation in vitro and a four‐ to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF‐8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT‐qPCR of FGF‐8b mRNA. Microarray analyses revealed significantly altered, up‐ and downregulated, genes in PC‐3 cell cultures (169 genes) and in orthotopic PC‐3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell‐to‐cell signaling and energy production, and the downregulated genes associated with differentiation (DKK‐1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT‐qPCR. In conclusion, our results demonstrate that FGF‐8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF‐8b actions on prostate cancer progression and metastasis. J. Cell. Biochem. 107: 769–784, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Prostate cancer (PCa) is considered the most prevalent malignancy and the second major cause of cancer-related death in males from Western countries. PCa exhibits variable clinical pictures, ranging from dormant to highly metastatic cancer. PCa suffers from poor prognosis and diagnosis markers, and novel biomarkers are required to define disease stages and to design appropriate therapeutic approach by considering the possible genomic and epigenomic differences. MicroRNAs (miRNAs) comprise a class of small noncoding RNAs, which have remarkable functions in cell formation, differentiation, and cancer development and contribute in these processes through controlling the expressions of protein-coding genes by repressing translation or breaking down the messenger RNA in a sequence-specific method. miRNAs in cancer are able to reflect informative data about the current status of disease and this might benefit PCa prognosis and diagnosis since that is concerned to PCa patients and we intend to highlight it in this paper.  相似文献   

12.
Survivin, a member of inhibitor of apoptosis family protein, has become an attractive therapeutic target in cancer due to its selective expression in tumor cells and its important roles for tumor cell viability. Here, we show that vector-based small interfering RNAs (siRNAs) silenced survivin expression in prostate cancer cells, resulting in significantly reduced cell proliferation and enhanced apoptosis, and increased the sensitivity of prostate cancer cells (PC-3) to the apoptosis-inducing agent, platinol. Furthermore, PC-3 cells transfected with the siRNA-expressing vector showed lower tumor formation in nude mice xenografts in vivo. These results demonstrated that inhibition of survivin expression by siRNA attenuated the malignant phenotypes of prostate cancer cells, and may provide a novel approach for gene therapy of androgen-independent prostate cancer.  相似文献   

13.
Insight into the aberrant expression of microRNAs (miRNAs) and the genes that they regulate during the progression of cancer in general and prostate cancer (PCa) in particular is one of the most important issues in current molecular biomedicine and allows for the discovery of therapeutic or diagnostic miRNA targets. The present study aimed to analyze the available data regarding the direct or indirect effects of miRNAs on the expression of the mRNAs involved in carcinogenesis and to enable updating and optimizing the selection of the corresponding targets. The present review focuses on the data related to the genes with miRNA‐dependent expression during the development of PCa. The data used in this review have been extracted from research papers and the databases STRING, PANTHER and TargetScan, with a special focus on the genes directly associated with cell transformation and the maintenance of the transformed genotype, as well as tumor invasion and spread. The search for miRNA markers of PCa and therapeutically active molecules should rely on bioinformatics resources, such as data from recent experimental studies, as well as meta‐analysis and cross‐analysis of the data on the state of the tumor, patient status, histological/immunohistological data and data on mRNA–miRNA coexpression.  相似文献   

14.
15.
Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The mevalonate synthesis pathway produces intermediates for isoprenylation of small GTPases, which are involved in the regulation of actin cytoskeleton and cell motility. Here, we investigated the role of the prenylation transferases in the regulation of the cytoskeletal organization and motility of PC‐3 prostate cancer cells. This was done by using FTI‐277, GGTI‐298 or NE‐10790, the specific inhibitors of FTase (farnesyltransferase), GGTase (geranylgeranyltransferase)‐I and ‐II, respectively. Treatment of PC‐3 cells with GGTI‐298 and FTI‐277 inhibited migration and invasion in a time‐ and dose‐dependent manner. This was associated with disruption of F‐actin organization and decreased recovery of GFP–actin. Immunoblot analysis of various cytoskeleton‐associated proteins showed that the most striking change in GGTI‐298‐ and FTI‐277‐treated cells was a markedly decreased level of total and phosphorylated cofilin, whereas the level of cofilin mRNA was not decreased. The treatment of PC‐3 cells with GGTI‐298 also affected the dynamics of GFP–paxillin and decreased the levels of total and phosphorylated paxillin. The levels of phosphorylated FAK (focal adhesion kinase) and PAK (p‐21‐associated kinase)‐2 were also lowered by GGTI‐298, but levels of paxillin or FAK mRNAs were not affected. In addition, GGTI‐298 had a minor effect on the activity of MMP‐9. RNAi knockdown of GGTase‐Iβ inhibited invasion, disrupted F‐actin organization and decreased the level of cofilin in PC‐3 cells. NE‐10790 did not have any effect on PC‐3 prostate cancer cell motility or on the organization of the cytoskeleton. In conclusion, our results demonstrate the involvement of GGTase‐I‐ and FTase‐catalysed prenylation reactions in the regulation of cytoskeletal integrity and motility of prostate cancer cells and suggest them as interesting drug targets for development of inhibitors of prostate cancer metastasis.  相似文献   

17.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

18.
Targeting the androgen receptor (AR) signalling pathway remains the main therapeutic option for advanced prostate cancer. However, resistance to AR‐targeting inhibitors represents a great challenge, highlighting the need for new therapies. Activation of the PI3K/AKT pathway and increased expression of histone deacetylases (HDACs) are common aberrations in prostate cancer, suggesting that inhibition of such targets may be a viable therapeutic strategy for this patient population. Previous reports demonstrated that combination of PI3K inhibitors (PI3KIs) with histone deacetylase inhibitors (HDACIs) resulted in synergistic antitumour activities against preclinical models of prostate cancer. In this study, we demonstrate that the novel dual PI3K and HDAC inhibitor CUDC‐907 has promising antitumour activity against prostate cancer cell lines in vitro and castration‐resistant LuCaP 35CR patient‐derived xenograft (PDX) mouse model in vivo. CUDC‐907‐induced apoptosis was partially dependent on Mcl‐1, Bcl‐xL, Bim and c‐Myc. Further, down‐regulation of Wee1, CHK1, RRM1 and RRM2 contributed to CUDC‐907‐induced DNA damage and apoptosis. In the LuCaP 35CR PDX model, treatment with CUDC‐907 resulted in significant inhibition of tumour growth. These findings support the clinical development of CUDC‐907 for the treatment of prostate cancer.  相似文献   

19.
Molecular tumour targeting has significantly improved anti‐cancer protocols. Still, the addition of molecular targeting to the treatment regime has not led to a curative breakthrough. Combined mammalian target of Rapamycin (mTOR) and histone deacetylase (HDAC) inhibition has been shown not only to enhance anti‐tumour potential, but also to prevent resistance development seen under mono‐drug therapy. This investigation was designed to evaluate whether cross‐communication exists between mTOR signalling and epigenetic events regulated by HDAC. DU‐145 prostate cancer cells were treated with insulin‐like growth factor (IGF) to activate the Akt‐mTOR cascade or with the HDAC‐inhibitor valproic acid (VPA) to induce histone H3 and H4 acetylation (aH3, aH4). Subsequently, mTOR, Rictor, Raptor, p70s6k, Akt (all: total and phosphorylated), H3 and H4 (total and acetylated) were analysed by western blotting. Both techniques revealed a link between mTOR and the epigenetic machinery. IGF activated mTOR, Rictor, Raptor, p70s6k and Akt, but also enhanced aH3 and aH4. Inversely, IGFr blockade and knock‐down blocked the Akt‐mTOR axis, but simultaneously diminished aH3 and aH4. VPA treatment up‐regulated histone acetylation, but also activated mTOR‐Akt signalling. HDAC1 and 2 knock‐down revealed that the interaction with the mTOR system is initiated by histone H3 acetylation. HDAC‐mTOR communication, therefore, is apparent whereby tumour‐promoting (Akt/mTORhigh, aH3/aH4low) and tumour‐suppressing signals (Akt/mTORlow, aH3/aH4high) are activated in parallel. Combined use of an HDAC‐ and mTOR inhibitor might then diminish pro‐tumour effects triggered by the HDAC‐ (Akt/mTORhigh) or mTOR inhibitor (aH3/aH4low) alone.  相似文献   

20.
Taxane‐based chemotherapy drugs (cabazitaxel, docetaxel, and paclitaxel) are microtubule inhibitors, which are effectively and frequently used to treat metastatic prostate cancer (PCa). Among these, cabazitaxel is offered as a new therapeutic option for patients with metastatic castration‐resistant PC as that are resistant to other taxanes. Here, we investigated the cellular and molecular changes in response to cabazitaxel in comparison with docetaxel and paclitaxel in androgen‐independent human PCas. The androgen‐independent human PCa cell lines, PC3 and DU145, were treated with 1 to 5nM cabazitaxel, docetaxel, or paclitaxel, and assessed for cell viability (MTT assay), colony forming ability and migration (scratch assay). The induction of apoptosis was determined through measurement of mitochondrial membrane potential (JC‐1 assay) and caspase‐3 activity assay. The protein expression changes (caspase‐3, caspase‐8, Bax, Bcl‐2, β‐tubulin, nuclear factor‐κB [NF‐κB/p50, NF‐κB/p65], vascular endothelial growth factor, WNT1‐inducible signaling pathway protein‐1 [WISP1], transforming growth factor β [TGF‐β]) in response to drug treatment were screened via western blotting. Under our experimental conditions, all taxanes significantly reduced WISP1 and TGF‐β expressions, suggesting an anti‐metastatic/antiangiogenic effect for these drugs. On the other hand, cabazitaxel induced more cell death and inhibited colony formation compared to docetaxel or paclitaxel. The highest fold change in caspase‐3 activity and Bax/Bcl‐2 ratio was also detected in response to cabazitaxel. Furthermore, the induction of β‐tubulin expression was lower in cabazitaxel‐treated cells relative to the other taxanes. In summary, cabazitaxel shows molecular changes in favor of killing PCa cells compared to other taxanes, at least for the parameters analyzed herein. The differences with other taxanes may be important while designing other studies or in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号