首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.  相似文献   

2.
Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase‐2 (MMP‐2). It has been shown that simultaneous inhibition of MMP‐2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML‐7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co‐administration of nitric oxide synthase (NOS) inhibitor (1400W or L‐NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia–reoxygenation (H‐R)‐induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP‐2 by Doxy (25–100 μM), MLCK by ML‐7 (0.5–5 μM) and NOS by L‐NAME (25–100 μM) or 1400W (25–100 μM) protected myocyte contractility after H‐R in a concentration‐dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H‐R at the level of highest single‐drug concentration. The combination of subthreshold concentrations of NOS, MMP‐2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP‐2. The observed protection with addition of L‐NAME or 1400W was better than previously reported combination of ML‐7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.  相似文献   

3.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

4.
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above‐mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up‐regulation of MCU promoted the expression and activation of calpain‐1/2 and down‐regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock‐down cultured cell. In I/R models of transgenic mice over‐expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up‐regulation induces calpain activation, which down‐regulates OPA1, consequently leading to mitochondrial dynamic imbalance.  相似文献   

5.
6.
Ischaemia/reperfusion (I/R) injury is a common clinical condition that results in apoptosis and oxidative stress injury. Thyroid hormone was previously reported to elicit cardiac myocyte hypertrophy and promote cardiac function after cardiac injury. We used an in vivo mouse model of I/R injury and in vitro primary cardiomyocyte culture assays to investigate the effects of thyroid hormone on cardiomyocytes during hypoxia/reoxygenation (H/R) injury. The results showed that T3 pretreatment in vivo significantly improved left ventricular function after I/R injury. In vitro, T3 pretreatment decreased cell apoptosis rate, inhibited caspase-3 activity and decreased the Bax/Bcl-2 ration induced by H/R injury. T3 pretreatment significantly attenuated the loss of mitochondrial membrane potential. Furthermore, it was observed that T3 diminished the expression of NCX1 protein and decreased SERCA2a protein expression in H/R-induced cardiomyocytes, and T3 prevented intracellular Ca2+ increase during H/R injury. Also, T3 increased the expression of IGF-1, and PI3K/Akt signalling in cardiomyocytes under H/R-induced injury, and that the protective effect of T3 against H/R-induced injury was blocked by the PI3K inhibitor LY294002. IGF-1 receptor (IGF-1R) inhibitor GSK1904529A significantly inhibited the expression of IGF-1R and PI3K/Akt signalling. In summary, T3 pretreatment protects cardiomyocytes against H/R-induced injury by activating the IGF-1-mediated PI3K/Akt signalling pathway.  相似文献   

7.
Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up‐regulating Bcl‐2 expression and decreasing the ratio of Bax to Bcl‐2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC‐1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production.  相似文献   

8.
Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase entry into cardiomyocytes.  相似文献   

9.
‘Methylamine irisolidone’ (=5,7‐dihydroxy‐6‐methoxy‐3‐(4‐methoxyphenyl)‐8‐[(methylamino)methyl]‐4H‐[1]benzopyran‐4‐one), a new compound, is a structurally modified kakkalide with good water solubility. In this study, we investigated its effect on hypoxia/reoxygenation (H/R) injury in cultured rat cardiac myocytes. The results showed that methylamine irisolidone could significantly inhibit lactate dehydrogenase (LDH) release, enhance the mitochondrial membrane potential, decrease intracellular calcium (Ca2+) associated with the attenuation of reactive oxygen species (ROS) generation, reduce contents of malondialdehyde (MDA), and increase the activity of superoxide dismutase (SOD) after H/R in a dose‐dependent manner. The present study demonstrated that methylamine irisolidone can directly protect cardiomyocytes against H/R injury, primarily as a result of reduction of the intracellular Ca2+ overload coincident with an attenuation of ROS generation and ROS‐mediated lipid peroxidation, which may contribute to the preservation of mitochondrion function and antioxidant against H/R injury.  相似文献   

10.
11.
12.
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.  相似文献   

13.
Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes.  相似文献   

14.
Myocardial infarction (MI), which is characterized by chamber dilation and LV dysfunction, is associated with substantially higher mortality. We investigated the effects and underlying mechanisms of Luteolin on post‐infarction cardiac dysfunction. Myocardial infarction was constructed by left anterior descending coronary artery ligation. In vitro, cultured neonatal cardiomyocytes subjected to simulated MI were used to probe mechanism. Luteolin significantly improved cardiac function, decreased cardiac enzyme and inflammatory cytokines release after MI. Enhanced autophagic flux as indicated by more autophagosomes puncta, less accumulation of aggresomes and P62 in the neonatal cardiomyocytes after hypoxia was observed in the Luteolin pre‐treatment group. Western blot analysis also demonstrated that Luteolin up‐regulated autophagy in the cardiomyocytes subjected to simulated MI injury. Furthermore, Luteolin increased mitochondrial membrane potential, adenosine triphosphate content, citrate synthase activity and complexes I/II/III/IV/V activities in the cardiomyocytes subjected to simulated MI injury. Interestingly, mammalian sterile 20‐like kinase 1 (Mst1) knockout abolished the protective effects of Luteolin administration. Luteolin enhances cardiac function, reduces cardiac enzyme and inflammatory markers release after MI. The protective effects of Luteolin are associated with up‐regulation of autophagy and improvement of mitochondrial biogenesis through Mst1 inhibition.  相似文献   

15.
Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH‐induced cardiac damage performed with the IH‐exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase‐1 (HO‐1) activator, on the cardiac injury induced by IH. Neonatal rat cardiomyocyte (NRC) was treated with or without haemin before IH exposure. Eighteen male Sprague‐Dawley (SD) rats were randomized into three groups: control group, IH group (PBS, ip) and IH + haemin group (haemin, 4 mg/kg, ip). The cardiac function was determined by echocardiography. Mitochondrial fission was evaluated by Mitotracker staining. The mitochondrial dynamics‐related proteins (mitochondrial fusion protein, Mfn2; mitochondrial fission protein, Drp1) were determined by Western blot. The apoptosis of cardiomyocytes and heart sections was examined by TUNEL. IH regulated mitochondrial dynamics‐related proteins (decreased Mfn2 and increased Drp1 expressions, respectively), thereby leading to mitochondrial fragmentation and cell apoptosis in cardiomyocytes in vitro and in vivo, while haemin‐induced HO‐1 up‐regulation attenuated IH‐induced mitochondrial fragmentation and cell apoptosis. Moreover, IH resulted in left ventricular hypertrophy and impaired contractile function in vivo, while haemin ameliorated IH‐induced cardiac dysfunction. This study demonstrates that pharmacological activation of HO‐1 pathway protects against IH‐induced cardiac dysfunction and myocardial fibrosis through the inhibition of mitochondrial fission and cell apoptosis.  相似文献   

16.

Aim

The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions.

Methods

Primary cardiomyocytes which were isolated from neonatal mouse were randomized to be treated with lentivirus carrying Lin28a siRNA, Lin28acDNA 72 h before H/R (9 h/2 h). Cardiomyocytes biomarkers release (LDH and CK), cardiomyocytes apoptosis, mitochondria biogenesis and morphology, intracellular reactive oxygen species (ROS) production, ATP content and inflammatory cytokines levels after H/R injury in high glucose/high fat conditions were compared between groups. The target proteins of Lin28a were examined by western blot analysis.

Results

Our results revealed that Lin28a cDNA transfection (overexpression) significantly inhibited cardiomyocyte apoptotic index, improved mitochondria biogenesis, increased ATP production and reduced ROS production as compared with the H/R group in HG/HF conditions. Lin28a siRNA transfection (knockdown) rendered the cardiomyocytes more susceptible to H/R injury as evidenced by increased apoptotic index, impaired mitochondrial biogenesis, decreased ATP production and increased ROS level. Interestingly, these effects of Lin28a were blocked by pretreatment with the PI3K inhibitor wortmannin. Lin28a overexpression increased, while Lin28a knockdown inhibited IGF1R, Nrf-1, Tfam, p-IRS-1, p-Akt, p-mTOR, p-p70s6k, p-AMPK expression levels after H/R injury in HG/HF conditions. Moreover, pretreatment with wortmannin abolished the effects of Lin28a on the expression levels of p-AKT, p-mTOR, p-p70s6k, p-AMPK.

Conclusions

The present results suggest that Lin28a inhibits cardiomyocytes apoptosis by enhancing mitochondrial biogenesis and function under high glucose/high fat conditions. The mechanism responsible for the effects of Lin28a is associated with the PI3K/Akt dependent pathway.  相似文献   

17.
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP‐ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP‐ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP‐ribose) polymerase inhibition suppressed H/R‐induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R‐treated cells. Poly(ADP‐ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R‐induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP‐ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R‐induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.  相似文献   

18.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

19.
This study was designed to investigate whether Resveratrol (Res) could be a prophylactic factor in the prevention of I/R injury and to shed light on its underlying mechanism. Primary culture of neonatal rat cardiomyocytes were randomly distributed into three groups: the normal group (cultured cardiomyocytes were in normal conditions), the I/R group (cultured cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion), and the Res+I/R group (100 µmol/L Res was administered before cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion). To test the extent of cardiomyocyte injury, several indices were detected including cell viability, LDH activity, Na+-K+-ATPase and Ca2+-ATPase activity. To test apoptotic cell death, caspase-3 activity and the expression of Bcl-2/Bax were detected. To explore the underlying mechanism, several inhibitors, intracellular calcium, SOD activity and MDA content were used to identify some key molecules involved. Res increased cell viability, Na+-K+-ATPase and Ca2+-ATPase activity, Bcl-2 expression, and SOD level. While LDH activity, capase-3 activity, Bax expression, intracellular calcium and MDA content were decreased by Res. And the effect of Res was blocked completely by either L-NAME (an eNOS inhibitor) or MB (a cGMP inhibitor), and partly by either DS (a PKC inhibitor) or Glybenclamide (a KATP inhibitor). Our results suggest that Res attenuates I/R injury in cardiomyocytes by preventing cell apoptosis, decreasing LDH release and increasing ATPase activity. NO, cGMP, PKC and KATP may play an important role in the protective role of Res. Moreover, Res enhances the capacity of anti-oxygen free radical and alleviates intracellular calcium overload in cardiomyocytes.  相似文献   

20.
目的:探讨番茄红素对心肌细胞缺氧复氧的保护作用以及其分子机制。方法:采用原代培养心肌细胞建立缺氧/复氧损伤模型,实验分8组:正常对照组,H/R组,H/R+番茄红素(1,2,4,8,16,32μmol/L)剂量组。观察各组细胞经H/R损伤后,细胞内天冬氨酸氨基转移酶(AST)、肌酸激酶(CK)、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的变化情况,选择正常对照组,H/R组,最佳番茄红素剂量组做MTT分析细胞凋亡,Western检测TRL 4以及NF-κB的表达。结果:番茄红素(16,8,4,2μmol/L)剂量组可显著降低缺氧/复氧损伤心肌细胞内AST、CK、LDH释放量及MDA的生成,并能提高SOD活性。此外番茄红素可减少心肌细胞缺氧/复氧损伤后的心肌凋亡,减少TRL 4受体以及NF-κB的表达。结论:番茄红素具有抗缺氧/复氧损伤,保护心肌细胞的作用,其机制可能是通过抑制TRL 4通路来实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号