首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin-2 (AQP2) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2-E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild-type AQP2 and AQP2-E258K also formed homotetramers, whereas AQP2-R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co-injection, AQP2-E258K, but not AQP2-R187C, was able to heterotetramerize with wild-type AQP2. Since an AQP monomer is the functional unit and AQP2-E258K is a functional but misrouted water channel, heterotetramerization of AQP2-E258K with wild-type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the 'loss-of-function' phenotype is caused by an impaired routing rather than impaired function of the wild-type protein.  相似文献   

3.
Birds can produce hyperosmotic urine, but their renal morphology differs from that of mammals. Recent studies in mammals, suggested that various aquaporins (AQPs) are present in the kidney and play crucial roles in urine production. To elucidate the role of AQPs in the avian kidney, we first examined for the presence of AQP1, 2, 3, 4, 7 and 9 mRNAs in the chick (Gallus gallus) kidney by RT-PCR analysis. Next, we quantified variations of AQPs mRNAs levels in chick kidney after hyperosmotic stimulation (water-deprivation or salt-loading) by real-time RT-PCR analysis. Our study showed that in addition to AQP1, 2, 3, 4 and 7, chick kidney also expressed AQP9 and that hyperosmotic stimulation induced changes in AQPs expression. In particular, water-deprivation increased AQP2 and AQP3 mRNAs levels, whereas salt-loading induced a significant increase in AQP1, AQP2 and AQP9 mRNAs levels. AQP4 and AQP7 mRNA levels were not affected by any hyperosmotic stimulation. Taken together, these results indicated that the presence of AQPs in chick kidney is similar to that in mammals, that the chick kidney has an additional AQP9 and that AQP1, 2, 3 and 9 may play a crucial but different role in water permeability in this organ.  相似文献   

4.
Aquaporin-2 (AQP2) water channel mutations cause autosomal recessive and dominant nephrogenic diabetes insipidus (NDI). Expressed in oocytes, a mutant in dominant (AQP2-E258K), but not in recessive (AQP2-R187C), NDI conferred a specific dominant-negative effect on wild-type (wt) AQP2 water permeability (Pf) only at low expression levels. Since at these levels, the yield of conventional-isolated plasma membranes was too low, an improved technique to semiquantify AQP2 in the plasma membrane was needed. Antibodies against the C-loop of AQP2 were not applicable since they were unspecific and introduction of a tag into this loop caused misfolding and ER retardation. Membrane-impermeable biotin analogues turned out to label intracellular AQP2 proteins. Therefore, a method has been developed which generates a high yield of nearly pure plasma membranes, which enables semiquantification of plasma membrane proteins expressed at low levels in oocytes. Our new method allows for phenotype-genotype correlation studies in a wide range of channelopathies.  相似文献   

5.
6.
Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin‐regulated water reabsorption via aquaporin‐2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2‐mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin–cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP‐induced increase in ser256‐AQP2 and osmotic water permeability. A similar effect on ser256‐AQP2 was found in V1aR ?/? mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan–V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256‐AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium‐inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance.  相似文献   

7.
Background information. Mercurials inhibit AQPs (aquaporins), and site‐directed mutagenesis has identified Cys189 as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury‐insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys189 of AQP1. Indeed, the osmotic water permeability (Pf) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His‐tagged rAPR4 (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+‐nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. Results. The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped‐flow apparatus. Surprisingly, the Pf of AQP4 proteoliposomes was significantly decreased by 5 μM HgCl2 within 30 s, and this effect was completely reversed by 2‐mercaptoethanol. The dose‐ and time‐dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site‐directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys178, which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. Conclusions. Our results suggest that mercury inhibits the Pf of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

8.
9.
The purpose of the present study was to ascertain the tissue-specific expression of the water channel protein, aquaporin 3 (AQP3), during salinity acclimation and larval development of silver sea bream (Sparus sarba). A cDNA fragment encoding aquaporin 3 (aqp3) from silver sea bream gill was cloned and from the deduced amino acid sequence a polyclonal antibody was prepared. AQP3 was found to be present in gill, kidney, liver, brain, heart, and spleen but not in whole blood. The abundance of AQP3 was significantly highest in gills of hypoosmotic (6 ppt) and isoosmotic (12 ppt) acclimated sea bream when compared to seawater (33 ppt) and hypersaline (50 ppt)- acclimated sea bream. Spleen tissue also displayed significantly high levels of AQP3 protein in hypoosmotic and isoosmotic salinities whereas the AQP3 abundance in brain, liver, heart, and kidney remained unchanged across the range of salinities tested. The ontogenetic profile of AQP3 was also investigated from developing sea bream larvae and AQP3 was first detected at 14 days posthatch (dph) and increased steadily up to 28–46 dph. In conclusion, this study has demonstrated that AQP3 expression is modulated in gill and spleen tissue of salinity acclimated sea bream and that it can be detected relatively early during larval development.  相似文献   

10.
Myo-inositol (MI; hexahydroxycyclohexane, C6H6O12) is a small neutral molecule used as a compatible osmolyte in the kidney medulla. At high concentrations, MI appears to act as a chemical chaperone and was shown to promote plasma membrane expression of the impaired cystic fibrosis chloride channel (Δ508-CFTR). In the present study, we measured whether MI could increase expression of two human aquaporin 2 (AQP2) mutants which were recently identified as causing nephrogenic diabetes insipidus (NDI). Both proteins (D150E and G196D) were expressed in Xenopus laevis oocytes, but only D150E displayed an increase in oocyte water permeability (P f). Adding 5 mM MI to the bathing solution for 24 h produced a 50% increase in the D150E-associated P f, while it had no effect on noninjected oocytes or on oocytes expressing wt-AQP2 or G196D. Western blots performed on purified plasma membrane preparations confirmed that MI increased the amount of D150E present at the plasma membrane, while G196D was always undetectable. X. laevis oocytes are remarkably impermeable to MI, and the effect of MI on D150E expression does not require the presence of intracellular MI. The effect of external MI was dose-dependent (K 0.5 was 130 μM) and specific with respect to other forms of inositols. Further studies on a second group of AQP2 mutants causing NDI showed that K228E activity was similarly stimulated by MI, while V71M, A70D and S256L were not. It is concluded that physiological concentrations of extracellular MI can stimulate the expression of a specific subgroup of AQP2 mutants.  相似文献   

11.
Aquaporins (AQPs) are water channel proteins that participate in water transport. In the principal cells of the kidney collecting duct, water reabsorption is mediated by the combined action of AQP2 in the apical membrane and both AQP3 and AQP4 in the basolateral membrane, and the expression of AQP2 and AQP3 is regulated by antidiuretic hormone and water restriction. The effect of hypertonicity on AQP3 expression in Madin-Darby canine kidney (MDCK) epithelial cells was investigated by exposing the cells to hypertonic medium containing raffinose or NaCl. Northern blot and immunoblot analyses revealed that the amounts of AQP3 mRNA and AQP3 protein, respectively, were markedly increased by exposure of cells to hypertonicity. These effects were maximal at 12 and 24 h, respectively. Immunofluorescence and immunoelectron microscopy also demonstrated that the abundance of AQP3 protein was increased in cells incubated in hypertonic medium and that the protein was localized at the basolateral plasma membrane. These results indicate that the expression of AQP3 is upregulated by hypertonicity.  相似文献   

12.
Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; α-, β-, and γ-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, γ-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.  相似文献   

13.
Background information. AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0–12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291 , G1081–G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild‐type) animals. Results. Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP‐AQP5s) and expressed in polarized MDCK‐II (Madin—Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP‐AQP5 being translocated less efficiently. Thapsigargin and H‐89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP‐AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co‐localized with LAMP2 (lysosome‐associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co‐localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. Conclusion. Replacement of highly conserved hydrophobic Gly103 with strongly hydrophilic Asp103 in rat AQP5, though it did not affect water permeability, may possibly have resulted in less efficient membrane trafficking and increased lysosomal degradation, leading to its lower expression in the apical membrane of the acinar cells in the SMG.  相似文献   

14.
Congenital nephrogenic diabetes insipidus (NDI) is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2) gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2) gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.  相似文献   

15.
Hypoxia‐dependent accumulation of vascular endothelial growth factor (VEGF) plays a major role in retinal diseases characterized by neovessel formation. In this study, we investigated whether the glial water channel Aquaporin‐4 (AQP4) is involved in the hypoxia‐dependent VEGF upregulation in the retina of a mouse model of oxygen‐induced retinopathy (OIR). The expression levels of VEGF, the hypoxia‐inducible factor‐1α (HIF‐1α) and the inducible form of nitric oxide synthase (iNOS), the production of nitric oxide (NO), the methylation status of the HIF‐1 binding site (HBS) in the VEGF gene promoter, the binding of HIF‐1α to the HBS, the retinal vascularization and function have been determined in the retina of wild‐type (WT) and AQP4 knock out (KO) mice under hypoxic (OIR) or normoxic conditions. In response to 5 days of hypoxia, WT mice were characterized by (i) AQP4 upregulation, (ii) increased levels of VEGF, HIF‐1α, iNOS and NO, (iii) pathological angiogenesis as determined by engorged retinal tufts and (iv) dysfunctional electroretinogram (ERG). AQP4 deletion prevents VEGF, iNOS and NO upregulation in response to hypoxia thus leading to reduced retinal damage although in the presence of high levels of HIF‐1α. In AQP4 KO mice, HBS demethylation in response to the beginning of hypoxia is lower than in WT mice reducing the binding of HIF‐1α to the VEGF gene promoter. We conclude that in the absence of AQP4, an impaired HBS demethylation prevents HIF‐1 binding to the VEGF gene promoter and the relative VEGF transactivation, reducing the VEGF‐induced retinal damage in response to hypoxia.  相似文献   

16.
17.
Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine. Here, we report a frame-shift mutation in AQP2 causing dominant NDI. This AQP2 mutant is a functional water channel when expressed in Xenopus oocytes. However, expressed in polarized renal cells, it is misrouted to the basolateral instead of apical plasma membrane. Additionally, this mutant forms heterotetramers with wild-type AQP2 and redirects this complex to the basolateral surface. The frame shift induces a change in the COOH terminus of AQP2, creating both a leucine- and a tyrosine-based motif, which cause the reversed sorting of AQP2. Our data reveal a novel cellular phenotype in dominant NDI and show that dominance of basolateral sorting motifs in a mutant subunit can be the molecular basis for disease.  相似文献   

18.
Aquaporin‐1 (AQP1) is a proangiogenic water channel protein promoting endothelial cell migration. We previously reported that AQP1 silencing by RNA interference reduces angiogenesis‐dependent primary tumour growth in a mouse model of melanoma. In this study, we tested the hypothesis that AQP1 inhibition also affects animal survival and lung nodule formation. Melanoma was induced by injecting B16F10 cells into the back of C57BL6J mice. Intratumoural injection of AQP1 siRNA and CTRL siRNA was performed 10 days after tumour cell implantation. Lung nodule formation was analysed after the death of the mice. Western blot was used to quantify HIF‐1α, caspase‐3 (CASP3) and metalloproteinase‐2 (MMP2) protein levels. We found that AQP1 knock‐down (KD) strongly inhibited metastatic lung nodule formation. Moreover, AQP1 siRNA‐treated mice showed a twofold survival advantage compared to mice receiving CTRL siRNAs. The reduced AQP1‐dependent tumour angiogenesis caused a hypoxic condition, evaluated by HIF‐1α significant increase, in turn causing an increased level of apoptosis in AQP1 KD tumours, assessed by CASP3 quantification and DNA fragmentation. Importantly, a decreased level of MMP2 after AQP1 KD indicated a decreased activity against extracellular matrix associated with reduced vascularization and metastatic formation. In conclusion, these findings highlight an additional role for AQP1 as an important determinant of tumour dissemination by facilitating tumour cell extravasation and metastatic formation. This study adds knowledge on the role played by AQP1 in tumour biology and supports the view of AQP1 as a potential drug target for cancer therapy.  相似文献   

19.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

20.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号