共查询到20条相似文献,搜索用时 0 毫秒
1.
Kunuthur SP Mocanu MM Hemmings BA Hausenloy DJ Yellon DM 《Journal of cellular and molecular medicine》2012,16(8):1739-1749
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1(-/-) mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2(-/-) mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1(-/-) mice. The rise in threshold for protection in Akt2(-/-) mice might be due to their diabetic phenotype. 相似文献
2.
Role of PI3K in myocardial ischaemic preconditioning: mapping pro‐survival cascades at the trigger phase and at reperfusion 下载免费PDF全文
Xavier Rossello Jaime A Riquelme Sean M Davidson Derek M Yellon 《Journal of cellular and molecular medicine》2018,22(2):926-935
The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro‐survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K‐Akt, its negative regulator PTEN and other pro‐survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3β and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3β was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K‐dependent during the IPC phase. In conclusion, PI3K‐Akt plays a major role in IPC‐induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K‐independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade. 相似文献
3.
Jiuheng Yin Chao Zhou Kunqiu Yang Yanbei Ren Yuan Qiu Pengyuan Xu Weidong Xiao Hua Yang 《Cell biology international》2020,44(6):1405-1414
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract. 相似文献
4.
Jiang SH Liu CF Zhang XL Xu XH Zou JZ Fang Y Ding XQ 《Cell biochemistry and function》2007,25(3):335-343
Brief and sublethal ischaemia renders an organ tolerant to subsequent prolonged ischaemia, which is called ischaemic preconditioning (IPC). In regard to the beneficial effects and endogenous mechanisms of renal delayed IPC, few data are available. In this study, we aim at determining reno-protective effects of delayed IPC against ischaemia-reperfusion (I/R) injury, and illustrating whether these effects are associated with suppressing inflammation and nuclear factor-kappaB (NF-kappaB) activation. I/R injury was induced by clamping both renal pedicles for 40 min, followed by 24 h of reperfusion. The rats were subjected to ischaemia for 20 min (preconditioning) or sham surgery (non- preconditioning) at day 4 before I/R. Functional and morphological parameters were evaluated at 24 h after reperfusion. At the same time, macrophage (ED-1(+)) infiltration, and the expression of intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-alpha (TNF-alpha) were assessed by immunohistochemistry. Moreover, I kappa B-alpha degradation and NF-kappaB/DNA binding activity were analyzed. Compared with rats exposed to I/R injury, preconditioned rats had a significant decrease in levels of serum creatinine (Scr, 384.3 +/- 21.8 micromol/L vs. 52.5 +/- 21.7 micromol/L; p<0.001), blood urea nitrogen (BUN, 40.4 +/- 2.7 mmol/L vs. 15.9 +/- 4.2 mmol/L; p<0.001) and serum aspartate aminotransferase (AST, 486.7 +/- 58.6 IU/L vs. 267.3 +/- 43.9 IU/L; p<0.001). Parallel to the above changes, preconditioned rats preserved structural integrity and decreased tubulointerstitial damage scores (3.4 +/- 0.3 vs. 0.2 +/- 0.05; p<0.001) and ED-1(+) cell infiltration (25.3 +/- 3.5 vs. 6.2 +/- 1.2 cells/HPF, p<0.01). Furthermore, our results showed that the expression of ICAM-1 and TNF-alpha, the degree of I kappa B-alpha degradation, and NF-kappaB/DNA binding activity were reduced by IPC. Taken together, our results demonstrated that delayed IPC offered both functional and histological protection, which may be related to suppression of inflammation in preconditioned kidneys. 相似文献
5.
Jssica Freitas Araújo Encinas Carlos Henrique Foncesca Matheus Moreira Perez Diogo Pimenta Simes Beatriz da Costa Aguiar Alves Marcelo Rodrigues Bacci Laura Beatriz Mesiano Maifrino Fernando Luiz Affonso Fonseca Glaucia Luciano da Veiga 《Cell biochemistry and function》2019,37(6):443-451
Renal cells need oxygen for homeostasis; it is known for adjusting cellular functioning and the energy obtainment have a broad relationship with cellular respiration, through the O2 bioavailability. O2 homeostasis regulation in the kidney is mediated by hypoxia‐inducible factors (HIFs). HIF is divided into three α isoforms, represented by HIF‐1α, HIF‐2α, and HIF‐3α in addition to three paralogs of HIF‐1β; these are involved in some metabolic processes, as well as in the pathogenesis of several diseases. Renal biopsy analyses of patients and experimental animal models aim to understand the relationship between HIF and protection against developing renal diseases or the induction of their onset, being thus this molecule can be considered a potential biomarker of renal disease. We carried out a systematic review to which we included studies on HIF‐1α and renal disease in the last 5 years (2013‐2018) in researches with humans and/or animal model through searches in three databases: LILACS, PubMed, and SciELO by two researchers. We obtained 22 articles that discussed the relationship with HIF as inductor or protector against renal disease and no relation between HIF and renal. We observed controversies remain regarding the relation between of HIF with renal diseases; this may be related to the different intracellular pathways mediated by HIF‐1α, thereby determining differentiated cellular responses. 相似文献
6.
7.
Stacy H. Shomento Chao Wan Xuemei Cao Marie‐Claude Faugere Mary L. Bouxsein Thomas L. Clemens Ryan C. Riddle 《Journal of cellular biochemistry》2010,109(1):196-204
The hypoxia‐inducible factors have recently been identified as critical regulators of angiogenic–osteogenic coupling. Mice overexpressing HIFα subunits in osteoblasts produce abundant VEGF and develop extremely dense, highly vascularized long bones. In this study, we investigated the individual contributions of Hif‐1α and Hif‐2α in angiogenesis and osteogenesis by individually disrupting each Hifα gene in osteoblasts using the Cre‐loxP method. Mice lacking Hif‐1α demonstrated markedly decreased trabecular bone volume, reduced bone formation rate, and altered cortical bone architecture. By contrast, mice lacking Hif‐2α had only a modest decrease in trabecular bone volume. Interestingly, long bone blood vessel development measured by angiography was decreased by a similar degree in both ΔHif‐1α and ΔHif‐2α mice suggesting a common role for these Hifα subunits in skeletal angiogenesis. In agreement with this idea, osteoblasts lacking either Hif‐1α or Hif‐2α had profound reductions in VEGF mRNA expression but only the loss of Hif‐1α impaired osteoblast proliferation. These findings indicate that expression of both Hif‐1α and Hif‐2α by osteoblasts is required for long bone development. We propose that both Hif‐1α and Hif‐2α function through cell non‐autonomous modes to promote vascularization of bone and that Hif‐1α also promotes bone formation by exerting direct actions on the osteoblast. J. Cell. Biochem. 109: 196–204, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Enhanced endothelial progenitor cell mobilization and function through direct manipulation of hypoxia inducible factor‐1α 下载免费PDF全文
Tao Zan Hua Li Zijing Du Bin Gu Kai Liu Qingfeng Li 《Cell biochemistry and function》2015,33(3):143-149
Endothelial progenitor cells (EPCs) play a significant role in physiological and pathological hypoxia resistance and neovascularization processes. The ability to mobilize EPCs from bone marrow usually indicates a prognostic endpoint of several vascular diseases. Thus, it is of great value to study possible approaches for activating functional EPCs. The mobilization/homing of EPCs from bone marrow is signalled by stromal‐derived factor‐1 (SDF‐1), which is regulated by the hypoxia‐inducible factor‐1α (HIF‐1α). This study investigated the effects of directly manipulating HIF‐1α on human EPCs in vitro. EPCs were isolated from human umbilical cord blood. Lentiviral vectors carrying HIF‐1α and shRNA targeting HIF‐1α were constructed for gene modification of the EPCs. Results demonstrated that after overexpression of HIF‐1α by lentiviral transfection, the proliferative capacity of EPCs was elevated while the apoptosis was inhibited and vice versa. On the other hand, the expression of angiogenic‐related cytokines including SDF‐1 was upregulated on both gene and protein levels when EPCs were transfected with HIF‐1α. These results indicate that direct HIF‐1α manipulation over human EPCs is an effective method to promote EPC function and mobilization, thus suggest that drugs or reagents that elevate HIF‐1α expression are capable of treating ischemic diseases. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Ke Wang Xue Zhu Kai Zhang Yongxiang Yin Yu Chen Ting Zhang 《Journal of biochemical and molecular toxicology》2018,32(3)
Chemoresistance is a critical challenge in the clinical treatment of triple‐negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin‐6 (IL‐6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA‐MB‐231 was first investigated. The results showed that IL‐6 treatment could induce upregulation of HIF‐1α via the activation of STAT3 in MDA‐MB‐231 cells, which consequently contributed to its effect against chemotherapeutic drug‐induced cytotoxicity and cell apoptosis. However, knockdown of HIF‐1α attenuated such effect via affecting the expressions of apoptosis‐related molecules as Bax and Bcl‐2 and drug transporters as P‐gp and MRP1. This study indicated that targeting at IL‐6/HIF‐1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy. 相似文献
10.
11.
12.
Tumour necrosis factor‐α promotes liver ischaemia‐reperfusion injury through the PGC‐1α/Mfn2 pathway
Jun Li Wenbo Ke Qi Zhou Yongzhong Wu Hong Luo Hong Zhou Bin Yang Yu Guo Qichang Zheng Yong Zhang 《Journal of cellular and molecular medicine》2014,18(9):1863-1873
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI. 相似文献
13.
HIF‐1α regulates EMT via the Snail and β‐catenin pathways in paraquat poisoning‐induced early pulmonary fibrosis 下载免费PDF全文
Yong Zhu Jiuting Tan Hui Xie Jinfeng Wang Xiaoxiao Meng Ruilan Wang 《Journal of cellular and molecular medicine》2016,20(4):688-697
Paraquat (PQ) poisoning‐induced pulmonary fibrosis is one of the primary causes of death in patients with PQ poisoning. Hypoxia‐inducible factor‐1α (HIF‐1α) and epithelial‐mesenchymal transition (EMT) are involved in the progression of pulmonary fibrosis. Snail and β‐catenin are two other factors involved in promoting EMT. However, the relationship among HIF‐1α, Snail and β‐catenin in PQ poisoning‐induced pulmonary fibrosis is not clear. Our research aimed to determine whether the regulation of HIF‐1α in EMT occurs via the Snail and β‐catenin pathways in PQ poisoning‐induced pulmonary fibrosis. Sixty‐six Sprague–Dawley rats were randomly and evenly divided into a control group and a PQ group. The PQ group was treated with an intragastric infusion of a 20% PQ solution (50 mg/kg) for 2, 6, 12, 24, 48 and 72 hrs. A549 and RLE‐6TN cell lines were transfected with HIF‐1α siRNA for 48 hrs before being exposed to PQ. Western blotting, real‐time quantitative PCR, immunofluorescence, immunohistochemistry and other assays were used in our research. In vivo, the protein levels of HIF‐1α and α‐SMA were increased at 2 hrs and the level of ZO‐1 (Zonula Occluden‐1) was reduced at 12 hrs. In vitro, the transient transfection of HIF‐1α siRNA resulted in a decrease in the degree of EMT. The expression levels of Snail and β‐catenin were significantly reduced when HIF‐α was silenced. These data demonstrate that EMT may be involved in PQ poisoning‐induced pulmonary fibrosis and regulated by HIF‐1α via the Snail and β‐catenin pathways. Hypoxia‐inducible factor‐1α may be a therapeutic target for the treatment of PQ poisoning‐induced pulmonary fibrosis. 相似文献
14.
15.
16.
Qiliqiangxin attenuates hypoxia‐induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF‐1α‐dependent glycolysis 下载免费PDF全文
Yanyan Wang Xueting Han Mingqiang Fu Jingfeng Wang Yu Song Yuan Liu Jingjing Zhang Jingmin Zhou Junbo Ge 《Journal of cellular and molecular medicine》2018,22(5):2791-2803
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression. 相似文献
17.
Dong Ryeol Ryu Mi Ra Yu Kyoung Hye Kong Hyoungnae Kim Soon Hyo Kwon Jin Seok Jeon Dong Cheol Han Hyunjin Noh 《Aging cell》2019,18(2)
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney. 相似文献
18.
19.
Wenzhe Yin Jun Xu Chao Li Xiankui Dai Tong Wu Jifeng Wen 《Cell biology international》2020,44(8):1616-1627
As a potential antitumor herbal medicine, plantamajoside (PMS) benefits the treatment of many human malignances. However, the role of PMS in the progression of hepatocellular carcinoma (HCC) and the related molecular mechanisms is still unknown. Here, we proved that the cell viabilities of HepG2 cells were gradually decreased with the increasing concentrations of CoCl2 and/or PMS via cell counting kit‐8 assay. Meanwhile, 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) and western blot assays were used to further confirm that PMS inhibited the CoCl2‐induced cell proliferation in HepG2 cells via suppressing the Ki67 and proliferating cell nuclear antigen expressions. We also performed wound‐healing and transwell assays and demonstrated that PMS inhibited CoCl2‐induced migration and invasion in HepG2 cells via suppressing the epithelial–mesenchymal transition (EMT) process. In addition, the use of 3‐(5′‐hydroxymethyl‐2′‐furyl)‐1‐benzylindazole further proved that PMS inhibited the malignant biological behaviors of HepG2 cells under hypoxic condition by suppressing the hypoxia‐inducible factor‐1α (HIF‐1α) expression. Besides, we further confirmed that PMS suppressed the growth and metastasis of implanted tumors in vivo. Given that PMS suppressed the proliferation and EMT induced by CoCl2 in HCC cells via downregulating HIF‐1α signaling pathway, we provided evidence that PMS might be a novel anti‐cancer drug for HCC treatment. 相似文献
20.
Dong‐Ling Li Jin‐Jun Liu Bing‐Hang Liu Hao Hu Lei Sun Yi Miao Hai‐Fei Xu Xiao‐Jiang Yu Xin Ma Jun Ren Wei‐Jin Zang 《Journal of cellular physiology》2011,226(4):1052-1059
Recent findings have reported that up‐regulation of tumor necrosis factor‐alpha (TNF‐α) induced by myocardial hypoxia aggravates cardiomyocyte injury. Acetylcholine (ACh), the principle vagal neurotransmitter, protects cardiomyocytes against hypoxia by inhibiting apoptosis. However, it is still unclear whether ACh regulates TNF‐α production in cardiomyocytes after hypoxia. The concentration of extracellular TNF‐α was increased in a time‐dependent manner during hypoxia. Furthermore, ACh treatment also inhibited hypoxia‐induced TNF‐α mRNA and protein expression, caspase‐3 activation, cell death and the production of reactive oxygen species (ROS) in cardiomyocytes. ACh treatment prevented the hypoxia‐induced increase in p38 mitogen‐activated protein kinase (MAPK) and c‐Jun N‐terminal kinase (JNK) phosphorylation, and increased extracellular signal‐regulated kinase (ERK) phosphorylation. Co‐treatment with atropine, a non‐selective muscarinic acetylcholine receptor antagonist, or methoctramine, a selective type‐2 muscarinic acetylcholine (M2) receptor antagonist, abrogated the effects of ACh treatment in hypoxic cardiomyocytes. Co‐treatment with hexamethonium, a non‐selective nicotinic receptor antagonist, and methyllycaconitine, a selective alpha7‐nicotinic acetylcholine receptor antagonist, had no effect on ACh‐treated hypoxic cardiomyocytes. In conclusion, these results demonstrate that ACh activates the M2 receptor, leading to regulation of MAPKs phosphorylation and, subsequently, down‐regulation of TNF‐α production. We have identified a novel pathway by which ACh mediates cardioprotection against hypoxic injury in cardiomyocytes. J. Cell. Physiol. 226: 1052–1059, 2011. © 2010 Wiley‐Liss, Inc. 相似文献