首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteosarcoma cells are recognized by abnormal function that causes a primary bone tumor. Osteosarcoma cells U2OS and SAOS‐2 were analyzed for the expression of cell surface markers. High expression was quantified for hyaloronidase receptor (CD‐44) > moderate for integrins (CD‐51 and ‐61), > and lower for selectins (CD‐62). High mitotic capacity were demonstrated by gene expression (measured by RT‐PCR) and the protein level (measured by FACS) for cFOS, cMYC, and cJUN. The basic definition of osteosarcoma is excessive production of pathological osteoid. Expression of mRNA for matrix genes osteocalcin, osteonectin, and biglycan was studied. Osteocalcin and osteonectin were detected in RNA from primary cultured marrow stromal, trabecular bone cells, and osteosarcoma cell lines (U2OS, SAOS‐2). mRNA for biglycan was detected only in primary cells and MG‐63 cell line and was undetectable in RNA from U2OS, SAOS‐2 osteosarcoma cell lines and by RNA extracted from bone biopsies of osteosarcoma patients. The absence of biglycan message observed in osteosarcoma samples provides evidence for the alterations in the extra cellular matrix which result with non‐mineralized osteoid produced by the osteosarcoma cells. J. Cell. Biochem. 84: 108–114, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose‐bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non‐calcifying strains showed strong CCM activity, with HCO3? as a preferred source of photosynthetic carbon in the non‐calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco‐lithophorids will be able to down‐regulate their CCMs, and re‐direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non‐calcifying strain, on the other hand, will experience only a 10% increase in HCO3?, thus making it less responsive to changes in carbonate chemistry of water.  相似文献   

3.
Bone marrow stromal cells (BMSCs) are an interesting subject of research because they have characteristics of mesenchymal stem cells. We investigated intracellular Ca2+ signaling in rat BMSCs. Agonists for purinergic receptors increased intracellular Ca2+ levels ([Ca2+]i). The order of potency followed ATP = UTP > ADP = UDP. ATP‐induced rise in [Ca2+]i was suppressed by U73122 and suramin, but not by pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS), suggesting the functional expression of G protein‐coupled P2Y2 receptors. RT‐PCR and immunohistochemical studies also showed the expression of P2Y2 receptors. [Ca2+]i response to UTP changed with cell density. The UTP‐induced rise in [Ca2+]i was greatest at high density. Vmax (maximum Ca2+ response) and EC50 (agonist concentration that evokes 50% of Vmax) suggest that the amount and property of P2Y2 receptors were changed by cell density. Note that UTP induced Ca2+ oscillation at only medium cell density. Pharmacological studies indicated that UTP‐induced Ca2+ oscillation required Ca2+ influx by store‐operated Ca2+ entry. Carbenoxolone, a gap junction blocker, enhanced Ca2+ oscillation. Immunohistochemical and quantitative real‐time PCR studies revealed that proliferating cell nuclear antigen (PCNA)‐positive cells declined but the mRNA expression level of the P2Y2 receptor increased as cell density increased. Co‐application of fetal calf serum with UTP induced Ca2+ oscillation at high cell density. These results suggest that the different patterns observed for [Ca2+]i mobilization with respect to cell density may be associated with cell cycle progression. J. Cell. Physiol. 219: 372–381, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 phosphors were prepared using a combustion‐assisted synthesis method. X‐Ray powder diffraction (XRD) analysis confirmed the formation of a Na3Ca6(PO4)5 crystal phase. Na3Ca6(PO4)5:Eu2+ phosphors have an efficient bluish‐green emission band that peaks at 489 nm, whereas Ce3+‐doped Na3Ca6(PO4)5 showed a bright emission band at 391 nm. Analysis of the experimental results suggests that enhancement of the Eu2+ emission intensity in co‐doped Na3Ca6(PO4)5:Eu2+,Ce3+ phosphors is due to a resonance‐type energy transfer from Ce3+ to Eu2+ ions, which is predominantly governed by an exchange interaction mechanism. These results indicate that Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 is potentially useful as a highly efficient, bluish‐green emitting, UV‐convertible phosphor for white‐light‐emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi‐cation via photosynthesis‐induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME ? pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4–7.5), suggesting a greater dependence on membrane‐bound CA for the dehydration of HCO3? ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.  相似文献   

6.
Triple whitlockite‐type structure‐based red phosphors Ca8MgBi1?x(PO4)7:xEu3+ (x = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid‐state reaction route and characterized by their X‐ray crystal structures. The X‐ray diffraction (XRD) patterns, Fourier transform infrared spectra, morphologies, photoluminescence spectra, UV/Vis reflectance spectra, decay times and the International Commission on Illumination (CIE) chromaticity coordinates of Ca8MgBi1?x(PO4)7:xEu3+ were analyzed. Eu‐doped Ca8MgBi(PO4)7 phosphors exhibited strong red luminescence with peaks at 616 nm due to the 5D07 F2 electric dipole transition of Eu3+ ions after excitation at 396 nm. The UV/Vis spectra indicated that the band gap of Ca8MgBi0.30(PO4)7:0.70Eu3+ is larger than that of Ca8MgBi(PO4)7. The phosphor developed in this study has great potential as a red‐light‐emitting phosphor for UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The mutated form of the Ca2+ channel CALHM1 (Ca2+ homeostasis modulator 1), P86L‐CALHM1, has been correlated with early onset of Alzheimer's disease (AD). P86L‐CALHM1 increases production of amyloid beta (Aβ) upon extracellular Ca2+ removal and its subsequent addback. The aim of this study was to investigate the effect of the overexpression of CALHM1 and P86L‐CALHM, upon Aβ treatment, on the following: (i) the intracellular Ca2+ signal pathway; (ii) cell survival proteins ERK1/2 and Ca2+/cAMP response element binding (CREB); and (iii) cell vulnerability after treatment with Aβ. Using aequorins to measure the effect of nuclear Ca2+ concentrations ([Ca2+]n) and cytosolic Ca2+ concentrations ([Ca2+]c) on Ca2+ entry conditions, we observed that baseline [Ca2+]n was higher in CALHM1 and P86L‐CALHM1 cells than in control cells. Moreover, exposure to Aβ affected [Ca2+]c levels in HeLa cells overexpressing CALHM1 and P86L‐CALHM1 compared with control cells. Treatment with Aβ elicited a significant decrease in the cell survival proteins p‐ERK and p‐CREB, an increase in the activity of caspases 3 and 7, and more frequent cell death by inducing early apoptosis in P86L‐CALHM1‐overexpressing cells than in CALHM1 or control cells. These results suggest that in the presence of Aβ, P86L‐CALHM1 shifts the balance between neurodegeneration and neuronal survival toward the stimulation of pro‐cytotoxic pathways, thus potentially contributing to its deleterious effects in AD.  相似文献   

8.
A series of blue phosphors Ca1.98–xMxPO4Cl:0.02Eu2+ (M = Mg and Sr) with different values of x were synthesized using a high‐temperature solid‐state reaction. X‐Ray diffraction and photoluminescence measurements were used to study the phase structure and luminescence properties. Ca2PO4Cl:0.02Eu2+ exhibits a tunable emission intensity and color due to the incorporation of Sr2+ or Mg2+. The incorporation of Sr2+ reduces the luminescence intensity and results in a slight red shift in the emission band. The incorporation of Mg2+ results in enhanced emission and a clear blue shift in the emission band along with a tunable chromatic coordination. Under excitation at λ = 334 nm, the emission intensity of the Mg2+‐doped Ca2PO4Cl:0.02Eu2+ is found to be 250% that of Ca2PO4Cl:0.02Eu2+. The luminescence behaviors of the as‐synthesized phosphors are discussed according to the host crystal structure and site occupancy of Eu2+. The results indicate that Mg2+‐doped Ca2PO4Cl:Eu2+ is more applicable as a near‐UV‐convertible blue phosphor for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, the effect of Li+ substitution in Li3V2(PO4)3 with a large divalent ion (Ca2+) toward lithium insertion is studied. A series of materials, with formula Li3?2xCaxV2(PO4)3/C (x = 0, 0.5, 1, and 1.5) is synthesized and studied in the potential region 3–0.01 V versus Li+/Li. Synchrotron diffraction demonstrates that Li3V2(PO4)3/C has a monoclinic structure (space group P21/n), while Ca1.5V2(PO4)3/C possesses a rhombohedral structure (space group R‐3c). The intermediate compounds, Li2Ca0.5V2(PO4)3/C and LiCaV2(PO4)3/C, are composed of two main phases, including monoclinic Li3V2(PO4)3/C and rhombohedral Ca1.5V2(PO4)3/C. Cyclic voltammetry reveals five reduction and oxidation peaks on Li3V2(PO4)3/C and Li2Ca0.5V2(PO4)3/C electrodes. In contrast, LiCaV2(PO4)3/C and Ca1.5V2(PO4)3/C have no obvious oxidation and reduction peaks but a box‐type voltammogram. This feature is the signature for capacitive‐like mechanism, which involves fast electron transfer on the surface of the electrode. Li3V2(PO4)3/C undergoes two solid‐solution and a short two‐phase reaction during lithiation and delithiation processes, whereas Ca1.5V2(PO4)3/C only goes through capacitive‐like mechanism. In operando X‐ray absorption spectroscopy confirms that, in both Li3V2(PO4)3/C and Ca1.5V2(PO4)3/C, V ions are reduced during the insertion of the first three Li ions. This study demonstrates that the electrochemical characteristic of polyanionic phosphates can be easily tuned by replacing Li+ with larger divalent cations.  相似文献   

10.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

11.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

12.
Cultured mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contains multipotent stem cells capable of originating a variety of mesenchymal cell lineages. Despite tremendous progress in MSC biology spurred by their therapeutic potential, current knowledge on receptor and signaling systems of MSCs is mediocre. Here we isolated MSCs from the human adipose tissue and assayed their responsivity to GPCR agonists with Ca2 + imaging. As a whole, a MSC population exhibited functional heterogeneity. Although a variety of first messengers was capable of stimulating Ca2+ signaling in MSCs, only a relatively small group of cells was specifically responsive to the particular GPCR agonist, including noradrenaline. RT-PCR and immunocytochemistry revealed expression of α1B-, α2A-, and β2-adrenoreceptors in MSCs. Their sensitivity to subtype-specific adrenergic agonists/antagonists and certain inhibitors of Ca2+ signaling indicated that largely the α2A-isoform coupled to PLC endowed MSCs with sensitivity to noradrenaline. The all-or-nothing dose-dependence was characteristic of responsivity of robust adrenergic MSCs. Noradrenaline never elicited small or intermediate responses but initiated large and quite similar Ca2+ transients at all concentrations above the threshold. The inhibitory analysis and Ca2+ uncaging implicated Ca2+-induced Ca2+ release (CICR) in shaping Ca2+ signals elicited by noradrenaline. Evidence favored IP3 receptors as predominantly responsible for CICR. Based on the overall findings, we inferred that adrenergic transduction in MSCs includes two fundamentally different stages: noradrenaline initially triggers a local and relatively small Ca2+ signal, which next stimulates CICR, thereby being converted into a global Ca2+ signal.  相似文献   

13.
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production.  相似文献   

14.
Hydrogen peroxide is the most stable of the reactive oxygen species (ROS) and is a regulator of development, immunity and adaptation to stress. It frequently acts by elevating cytosolic free Ca2+ ([Ca2+]cyt) as a second messenger, with activation of plasma membrane Ca2+‐permeable influx channels as a fundamental part of this process. At the genetic level, to date only the Ca2+‐permeable Stelar K+ Outward Rectifier (SKOR) channel has been identified as being responsive to hydrogen peroxide. We show here that the ROS‐regulated Ca2+ transport protein Annexin 1 in Arabidopsis thaliana (AtANN1) is involved in regulating the root epidermal [Ca2+]cyt response to stress levels of extracellular hydrogen peroxide. Peroxide‐stimulated [Ca2+]cyt elevation (determined using aequorin luminometry) was aberrant in roots and root epidermal protoplasts of the Atann1 knockout mutant. Similarly, peroxide‐stimulated net Ca2+ influx and K+ efflux were aberrant in Atann1 root mature epidermis, determined using extracellular vibrating ion‐selective microelectrodes. Peroxide induction of GSTU1 (Glutathione‐S‐Transferase1 Tau 1), which is known to be [Ca2+]cyt‐dependent was impaired in mutant roots, consistent with a lesion in signalling. Expression of AtANN1 in roots was suppressed by peroxide, consistent with the need to restrict further Ca2+ influx. Differential regulation of annexin expression was evident, with AtANN2 down‐regulation but up‐regulation of AtANN3 and AtANN4. Overall the results point to involvement of AtANN1 in shaping the root peroxide‐induced [Ca2+]cyt signature and downstream signalling.  相似文献   

15.
We examined whether a difference in potassium dihydrogenphosphate (KH2PO4) and potassium tripolyphosphate (K5P3O10) as dietary phosphorus sources could differentially effect the nephrocalcinosis and proximal tubular function in female rats. Rats were fed on a diet containing KH2PO4 or K5P3O10, at the normal phosphorus level (normal phosphorus diet) or at a high phosphorus level (high-phosphorus diet) for 21 d. Nephrocalcinosis, as confirmed by a histological examination, was apparent in all rats fed on the high-phosphorus diet, and this condition was more severe in those rats fed on K5P3O10 than in those fed on KH2PO4. As indicators of the proximal tubular function, the N-acetyl-β-D-glucosaminidase activity in urine and the urinary β2-microglobulin excretion were significantly increased in those rats fed on the high-phosphorus diet containing K5P3O10. These results indicate that the intake of a high-phosphorus diet, more strongly influenced the nephrocalcinosis and proximal tubular function when K5P3O10 rather than KH2PO4 was used as the dietary phosphorus source.  相似文献   

16.
《Cell calcium》2016,59(6):535-540
In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels.  相似文献   

17.
G protein‐coupled estrogen receptor (GPER) is a relatively recently identified non‐nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca2+ concentration, [Ca2+]i, nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G‐1, a selective GPER agonist, or extracellular administration of 17‐β‐estradiol and tamoxifen, increased [Ca2+]i in RBMVEC. The effect of G‐1 on [Ca2+]i was abolished in Ca2+‐free saline or in the presence of a L‐type Ca2+ channel blocker. G‐1 increased nitric oxide production in RBMVEC; the effect was prevented by NG‐nitro‐l ‐arginine methyl ester. G‐1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate‐conductance Ca2+‐activated K+ channels, apamin, and charibdotoxin. GPER‐mediated responses were sensitive to G‐36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G‐1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER‐mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.

  相似文献   


18.
The blood–brain barrier (BBB), consisting of specialized endothelial cells surrounded by astrocytes and pericytes, plays a crucial role in brain homeostasis. Many cerebrovascular diseases are associated with BBB breakdown and oxygen (O2) deprivation constitutes a critical factor that onsets its disruption. We investigated the impact of astrocytes and pericytes on brain endothelial cell permeability and survival during different degrees of O2 deprivation. Prolonged exposure to 1% O2 caused barrier breakdown and exposure to 0.1% O2 dramatically accelerated disruption and induced cell death, mediated at least in part via caspase‐3 activation. Reoxygenation allowed only cells exposed to 1% O2 to re‐establish barrier function. Notably co‐culture with astrocytes and pericytes substantially enhanced barrier function under normoxic conditions, and produced differential responses during O2 deprivation. At 1% O2 astrocytes partially maintained barrier integrity whereas pericytes accelerated its disruption in the short‐term, having positive effects only after prolonged exposure. Unexpectedly, at 0.1% O2 pericytes were more effective than astrocytes in preserving barrier function although the protection afforded by both cells involved inhibition of caspase‐3 pathways. Furthermore, cell‐specific regulation of auto‐ and paracrine VEGF signaling pathways were also in part responsible for the differential modulation of barrier function. Our data suggests that cellular cross‐talk within the neurovascular unit is crucial for preservation of barrier integrity and that pericytes, not astrocytes, play a significant role during severe and prolonged O2 deprivation. J. Cell. Physiol. 218: 612–622, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Thrombin increases the cytosolic Ca2+ concentrations and induces NO production by activating proteinase‐activated receptor 1 (PAR1) in vascular endothelial cells. The store‐operated Ca2+ influx is a major Ca2+ influx pathway in non‐excitable cells including endothelial cells and it has been reported to play a role in the thrombin‐induced Ca2+ signaling in endothelial cells. Recent studies have identified stromal interaction molecule 1 (STIM1) to function as a sensor of the store site Ca2+ content, thereby regulating the store‐operated Ca2+ influx. However, the functional role of STIM1 in the thrombin‐induced Ca2+ influx and NO production in endothelial cells still remains to be elucidated. Fura‐2 and diaminorhodamine‐4M fluorometry was utilized to evaluate the thrombin‐induced changes in cytosolic Ca2+ concentrations and NO production, respectively, in porcine aortic endothelial cells transfected with small interfering RNA (siRNA) targeted to STIM1. STIM1‐targeted siRNA suppressed the STIM1 expression and the thapsigargin‐induced Ca2+ influx. The degree of suppression of the STIM1 expression correlated well to the degree of suppression of the Ca2+ influx. The knockdown of STIM1 was associated with a substantial inhibition of the Ca2+ influx and a partial reduction of the NO production induced by thrombin. The thrombin‐induced Ca2+ influx exhibited the similar sensitivity toward the Ca2+ influx inhibitors to that seen with the thapsigargin‐induced Ca2+ influx. The present study provides the first evidence that STIM1 plays a critical role in the PAR1‐mediated Ca2+ influx and Ca2+‐dependent component of the NO production in endothelial cells. J. Cell. Biochem. 108: 499–507, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号