首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
CYLD is a tumour‐suppressor gene that is mutated in a benign skin tumour syndrome called cylindromatosis. The CYLD gene product is a deubiquitinating enzyme that was shown to regulate cell proliferation, cell survival and inflammatory responses, mainly through inhibiting NF‐κB signalling. Here we show that CYLD controls cell growth and division at the G1/S‐phase as well as cytokinesis by associating with α‐tubulin and microtubules through its CAP‐Gly domains. Translocation of activated CYLD to the perinuclear region of the cell is achieved by an inhibitory interaction of CYLD with histone deacetylase‐6 (HDAC6) leading to an increase in the levels of acetylated α‐tubulin around the nucleus. This facilitates the interaction of CYLD with Bcl‐3, leading to a significant delay in the G1‐to‐S‐phase transition. Finally, CYLD also interacts with HDAC6 in the midbody where it regulates the rate of cytokinesis in a deubiquitinase‐independent manner. Altogether these results identify a mechanism by which CYLD regulates cell proliferation at distinct cell‐cycle phases.  相似文献   

3.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

4.
Krüppel‐like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2‐mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up‐regulation of KLF2 and concomitant down‐regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum‐induced arthritic inflammation and joint destruction in mice in a dose‐dependent manner. Finally, co‐immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2‐mediated regulation of K/BxN serum‐induced arthritic inflammation.  相似文献   

5.
Oxidative stress, caused by reactive oxygen species (ROS), is a major contributor to inflammatory bowel disease (IBD)‐associated neoplasia. We mimicked ROS exposure of the epithelium in IBD using non‐tumour human colonic epithelial cells (HCEC) and hydrogen peroxide (H2O2). A population of HCEC survived H2O2‐induced oxidative stress via JNK‐dependent cell cycle arrests. Caspases, p21WAF1 and γ‐H2AX were identified as JNK‐regulated proteins. Up‐regulation of caspases was linked to cell survival and not, as expected, to apoptosis. Inhibition using the pan‐caspase inhibitor Z‐VAD‐FMK caused up‐regulation of γ‐H2AX, a DNA‐damage sensor, indicating its negative regulation via caspases. Cell cycle analysis revealed an accumulation of HCEC in the G1‐phase as first response to oxidative stress and increased S‐phase population and then apoptosis as second response following caspase inhibition. Thus, caspases execute a non‐apoptotic function by promoting cells through G1‐ and S‐phase by overriding the G1/S‐ and intra‐S checkpoints despite DNA‐damage. This led to the accumulation of cells in the G2/M‐phase and decreased apoptosis. Caspases mediate survival of oxidatively damaged HCEC via γ‐H2AX suppression, although its direct proteolytic inactivation was excluded. Conversely, we found that oxidative stress led to caspase‐dependent proteolytic degradation of the DNA‐damage checkpoint protein ATM that is upstream of γ‐H2AX. As a consequence, undetected DNA‐damage and increased proliferation were found in repeatedly H2O2‐exposed HCEC. Such features have been associated with neoplastic transformation and appear here to be mediated by a non‐apoptotic function of caspases. Overexpression of upstream p‐JNK in active ulcerative colitis also suggests a potential importance of this pathway in vivo.  相似文献   

6.
7.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

8.
Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L‐AP4, a type III mGluR‐selective agonist, enhances Ca2+ uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L‐AP4‐induced Ca2+ influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi/Go proteins, did not affect basal or mGluR6‐induced Ca2+ uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.  相似文献   

9.
Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.  相似文献   

10.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


11.
Human melanocyte homeostasis is sustained by paracrine factors that reduce the genotoxic effects of ultraviolet radiation (UV), the major etiological factor for melanoma. The keratinocyte‐derived endothelin‐1 (End‐1) and α‐melanocyte‐stimulating hormone (α‐MSH) regulate human melanocyte function, proliferation and survival, and enhance repair of UV‐induced DNA photoproducts by binding to the Gq‐ and Gi‐protein‐coupled endothelin B receptor (EDNRB), and the Gs‐protein‐coupled melanocortin 1 receptor (MC1R), respectively. We hereby report that End‐1 and α‐MSH regulate common effectors of the DNA damage response to UV, despite distinct signaling pathways. Both factors activate the two DNA damage sensors ataxia telangiectasia and Rad3‐related and ataxia telangiectasia mutated, enhance DNA damage recognition by reducing soluble nuclear and chromatin‐bound DNA damage binding protein 2, and increase total and chromatin‐bound xeroderma pigmentosum (XP) C. Additionally, α‐MSH and End‐1 increase total levels and chromatin localization of the damage verification protein XPA, and the levels of γH2AX, which facilitates recruitment of DNA repair proteins to DNA lesions. Activation of EDNRB compensates for MC1R loss of function, thereby reducing the risk of malignant transformation of these vulnerable melanocytes. Therefore, MC1R and EDNRB signaling pathways represent redundant mechanisms that inhibit the genotoxic effects of UV and melanomagenesis.  相似文献   

12.
Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.  相似文献   

13.
Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti‐apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia–serum deprivation‐induced apoptosis and stimulated BADS136 and AktS473 phosphorylation. Akt1 silencing reversed part (~52%) of the anti‐apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti‐apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1‐interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti‐apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti‐apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.  相似文献   

14.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

15.
The goal of the present work is to establish a correlation between the degree of histone post‐translational modifications and the effects caused by treatment of HT29 colon cancer cells with class I‐selective (MS‐275 and MC1855), class II‐selective (MC1568), and non‐selective (suberoylanilide hydroxamic acid (SAHA) histone deacetylase inhibitors (HDACi). This correlation could afford a mean to better understand the mechanism of action of new, more potent, and selective HDACi directly on the cells. To this end, LC coupled to MS was applied in studies of time and concentration‐dependent treatment with HDACi in HT29 cells. The results were correlated to their potency of histone deacetylase inhibition and to their effects on the cell cycle. The results indicate that the four tested inhibitors show a different pattern of time‐ and concentration‐dependent modification after treatment of HT29 cells. At the selected concentrations, they cause different histone hyperacetylation and different cell cycle effects. In particular, SAHA (non‐selective HDACi) affected hyperacetylation of all histones and caused massive cell death. MC1855 (class I‐selective HDACi, hydroxamate) proved to be more potent and less toxic (cell arrest in G2/M phase) than SAHA. MS‐275 (class I‐selective HDACi, benzamide) exhibited a higher degree of hyperacetylation of H4 and a lower degree of H2A, H2B, and H3 acetylation, causing a cell arrest in G0/G1 phase. On the contrary, MC1568 (class II‐selective HDACi) produced only a modest hyperacetylation of H4, was ineffective on the other histones, and showed no effect on cell cycle in HT29 cells.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR‐148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR‐148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR‐148a. The effects of miR‐148a on the phosphoryl‐ERK (pERK)/hypoxia‐inducible factor‐1α (HIF‐1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR‐148a on angiogenesis was demonstrated through a tube formation assay. Sixty‐three CRC tissues (28 early relapse and 35 non‐early relapse) were analysed to assess the relationship between miR‐148a and HIF‐1α/VEGF. The protein expression of pERK/HIF‐1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR‐148a (all P < 0.05). The protein expression of VEGF/HIF‐1α was strongly inversely associated with the expression of miR‐148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR‐148a significantly obliterated angiogenesis. miR‐148a suppresses VEGF through down‐regulation of the pERK/HIF‐1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR‐148a down‐regulation increased the early relapse rate of CRC. This demonstrates that miR‐148a is a potential diagnostic and therapeutic target.  相似文献   

17.
18.
19.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

20.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号