Introduction: Although it is possible to identify the genetic risk for type 1 diabetes (T1D), it is not possible to predict who will develop the disease. New biomarkers are needed that would help understand the mechanisms of disease onset and when to administer targeted therapies and interventions.
Areas covered: An overview is presented of international study efforts towards understanding the cause of T1D, including the collection of several extensive temporal sample series that follow the development of T1D in at risk children. The results of the proteomics analysis of these materials are presented, which have included bodily fluids, such as serum or plasma and urine, as well as tissue samples from the pancreas.
Expert commentary: Promising recent reports have indicated detection of early proteomic changes in the serum of patients prior to diagnosis, potentially providing new measures for risk assessment. Similarly, there has been evidence that post-translational modification (PTM) may result in the recognition of islet cell proteins as autoantigens; modified proteins could thus be used as targets for immunomodulation to overcome the threat of the autoimmune response. 相似文献
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications. 相似文献
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications. 相似文献
The discovery of insulin more than 90 years ago introduced a life‐saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell‐derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. 相似文献
The efficient processing of proinsulin into mature insulin and C-peptide is often compromised under conditions of beta cell stress, including diabetes. Impaired proinsulin processing has been challenging to examine by immunofluorescence staining in pancreas tissue because the characterization of antibodies specific for proinsulin, proinsulin intermediates, processed insulin and C-peptide has been limited. This study aimed to identify and characterize antibodies that can be used to detect products of proinsulin processing by immunofluorescence staining in pancreata from different species (mice, rats, dog, pig and human). We took advantage of several knockout mouse lines that lack either an enzyme involved in proinsulin processing or an insulin gene. Briefly, we report antibodies that are specific for several proinsulin processing products, including: a) insulin or proinsulin that has been appropriately processed at the B-C junction; b) proinsulin with a non-processed B-C junction; c) proinsulin with a non-processed A-C junction; d) rodent-specific C-peptide 1; e) rodent-specific C-peptide 2; and f) human-specific C-peptide or proinsulin. In addition, we also describe two ‘pan-insulin’ antibodies that react with all forms of insulin and proinsulin intermediates, regardless of the species. These antibodies are valuable tools for studying proinsulin processing by immunofluorescence staining and distinguishing between proinsulin products in different species. 相似文献
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1. 相似文献
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage.
Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review.
Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process. 相似文献
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are destroyed in the islets of Langerhans. One of its main pathological manifestations is the hyper-expression of Major Histocompatibility Complex I (MHC-I) by beta cells, which was first described over 3 decades ago yet its cause remains unknown. It might not only be a sign of beta cell dysfunction but could also render the cells susceptible to autoimmune destruction; for example, by islet-infiltrating CD8 T cells. In this report, we studied pancreas tissue from a 22-year-old non-diabetic male cadaveric organ donor who had been at high risk of developing T1D, in which autoantibodies against GAD and IA-2 were detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin-containing islets were identified, which hyper-expressed MHC-I. However, islet density and MHC-I expression exhibited a highly lobular and heterogeneous pattern even within the same section. In addition, many islets with high expression of MHC-I presented higher levels of CD8 T cell infiltration than normal islets. These results demonstrate the heterogeneity of human pathology that occurs early during the pre-diabetic, autoantibody positive phase, and should contribute to the understanding of human T1D. 相似文献
Non-hypercalcemic analogs of vitamin D(3) modulate the immune response through antigen-presenting cells (APCs) and activated T-cells. A large population-base case-control showed that vitamin D(3) intake significantly decreases the risk of type 1 diabetes development. The aim of this study was, therefore, to observe the in vivo effects of a vitamin D(3) analog administered to Bio Breeding (BB) rats. 1,25-Dihydroxy-16,23Z-diene-26,27-hexafluoro-19-nor vitamin D(3) (BXL-219, formerly Ro 26-2198) (BioXell, Milan, Italy) was administered in vivo to BB rats from days 42 to 110 of life at 0.2 microg/Kg BW. Control animals received only vehicle (olive oil, 4.8 microl/100 g BW). The animals of these two groups were subjected to insulin treatment as they became diabetic. Insulin (Humulin, 28.6 UI/day) was administered irrespective of diabetes occurrence to another group of rats for comparison. Blood glucose, insulin levels, glycosuria, degree of islet infiltration, and the expression of some antigens were observed. Results showed that the vitamin D(3) analog reduced diabetes incidence, although limitedly, in BB rats while administration of oral insulin increased diabetes incidence. In addition, the vitamin D(3) analog did not stimulate an enhancement in the expression of CD4 and CD25 in BB rats as it does in NOD mice, which may explain the failure of this as well as other antidiabetic treatments in the BB animal model of type 1 diabetes. 相似文献
In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology. 相似文献
Stem cells with the potential to form many different cell types are actively studied for their possible use in cell replacement therapies for several diseases. In addition, the differentiated derivatives of stem cells are being used as reagents to test for drugs that slow or correct disease phenotypes found in several degenerative diseases. This paper explores these approaches in the context of type 1 or juvenile diabetes, pointing to recent successes as well as the technical and theoretical challenges that lie ahead in the path to new treatments and cures. 相似文献