首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Abstract

The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.  相似文献   

8.
Nitzsche A  Paulus C  Nevels M 《Journal of virology》2008,82(22):11167-11180
The genomes of herpesviruses, including human cytomegalovirus (CMV), are double-stranded DNA molecules maintained as episomes during infection. The viral DNA lacks histones when encapsidated in the virion. However, it has been found histone associated inside infected cells, implying unidentified chromatin assembly mechanisms. Our results indicate that components of the host cell nucleosome deposition machinery target intranuclear CMV DNA, resulting in stepwise viral-chromatin assembly. CMV genomes undergo limited histone association and nucleosome assembly as early as 30 min after infection via DNA replication-independent mechanisms. Low average viral-genome chromatinization is maintained throughout the early stages of infection. The late phase of infection is characterized by a striking increase in average histone occupancy coupled with the process of viral-DNA replication. While the initial chromatinization affected all analyzed parts of the CMV chromosome, a subset of viral genomic regions, including the major immediate-early promoter, proved to be largely resistant to replication-dependent histone deposition. Finally, our results predict the likely requirement for an unanticipated chromatin disassembly process that enables packaging of histone-free DNA into progeny capsids.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号