首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Incubation of rat soleus muscles with 50 microM sphingosine or 50 microM sphinganine augmented basal 2-deoxy-D-glucose (2DG) transport 32%, but reduced the response to 0.1 and 1.0 mU insulin/ml by 17 and 27%, respectively. When the muscles were incubated with 50 microM phytosphingosine, a 63-93% increase in basal 2DG transport was observed. However, this treatment had no effect on insulin-stimulated 2DG transport. The phytosphingosine-induced increase in basal 2-DG transport was inhibited 93 and 98% with 35 and 70 microM cytochalasin B, respectively, suggesting that it is mediated by glucose transporters. Cellular accumulation of L-glucose, which is not mediated by glucose transporters, was not affected by phytosphingosine. It is concluded that (a) both sphingosine and sphinganine increase basal 2DG transport in muscle but diminish insulin-stimulated transport, and (b) phytosphingosine stimulates basal 2DG transport in muscle by a mechanism involving glucose transporters.  相似文献   

2.
The transport of 1,5-anhydro-D-glucitol (AG) across plasma membranes was investigated in rat hepatoma cells, Reuber H-35. The AG uptake by the cells showed a concentration gradient dependency: the uptake was saturated within 40 s, which was less than one-third of the saturation time for 2-deoxy-D-glucose (DG) uptake. Furthermore, the Km value of the transport system for AG was higher than 100 mM. Though AG has a pyranoid structure resembling that of glucose, AG did not compete for cellular uptake with DG, D-glucose or 3-O-methyl-D-glucose, which are taken into cells through the glucose transporters. Conversely, the DG transport was not inhibited by AG at concentrations up to 50 mM. AG transport was hardly inhibited by 10 microM cytochalasin B, which strongly inhibits glucose transporters. In contrast, the AG transport was inhibited by 100 microM phloretin much more strongly than the DG transport when cells were preincubated with the inhibitor; the inhibition constant was 28.0 microM. The AG transport was not inhibited by 100 microM phloridzin, while the DG uptake was slightly inhibited by phloridzin. On the basis of these observations we propose that the AG uptake into rat hepatoma cells is mediated by a carrier distinct from glucose transporters.  相似文献   

3.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

4.
A transport system for D-glucose was found in a Friend erythroleukemia cell line, T-3-C1-2-O and was characterized as a facilitated diffusion system. D-Glucose transport activity showed a half-saturation concentration of 2.2 mM and was inhibited by mercuric ions, cytochalasin B, phloretin, and stilbestrol, but was not strongly inhibited by phloridzin. Transport of 3-O-methyl-D-glucose was faster than D-glucose and the intracellular concentration of the sugar was found to reach the concentration in the assay medium. The treatment of cells with a differentiation-inducing reagent, dimethylsulfoxide(Me2SO), for 24 h caused a marked decrease in glucose transport activity due to a decrease in Vmax. In an induction-insensitive Friend cell line, T-3-K-1, D-glucose transport activity was low in untreated cells and Me2SO treatment did not cause a significant decrease in transport activity. The results obtained in this study indicate that the decrease in glucose transport activity is not due to the direct effect of Me2SO on transport activity, but is associated with the induction of differentiation. By immunoblotting cell lysates of T-3-C1-2-O cells using antibody to human erythrocyte glucose transporter, a single major band having a molecular weight of 52,000 was detected, which may be a glucose transporter in Friend cells.  相似文献   

5.
Protoplasts ofSaccharomyces cerevisiae prepared by snail-gut juice treatment were compared in their transport properties with intact cells. 1. Constitutive monosaccharide transport (D-xylose, 6-deoxy-D-glucose), as well as inducible transport of D-galactose, were unaltered. 2. Phosphorylation-associated transport of 2-deoxy-D-glucose was enhanced in protoplasts, possibly as a consequence of removal of the unstirred layer of the cell wall. 3. Proton-driven transports of trehalose, L-leucine, L-proline and monophosphate could not be activated by preincubation with D-glucose, apparently owing to lack of proton —solute coupling in transport. Utilization of glucose was not depressed but respiration was reduced by about 50% while acidification of the external medium after glucose addition was inhibited by more than 90%. This may be related to the inability of protoplast plasma membrane H-ATPase to be activated by glucose and hence to impaired proton-translocating capacity. Uranyl ions inhibited generally much less in protoplasts than in intact cells although their binding to protoplasts was greater (maximum 0.68 fmol per cell but 3.2 fmol per protoplast).  相似文献   

6.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

7.
The freshwater fungus Achlya transported D-(+)glucose (glucose) and 2-deoxy-D-glucose (deoxyglucose) by an energy-related system. Their transport4 was inhibited by uncouplers of metabolic energy such as 2,4-dinitrophenol, cyanide, azide, and carbonylcyanide-p-chlorophenylhydrazone. Besides inhibiting each other, glucose and deoxyglucose transport was inhibited by D-(+)galactose, D-(+)mannose, and D-(+)xylose. Many other sugars tested failed to inhibit glucose transport implying a certain degree of specificity. Glucose transport was pH (optimum at 6.5) and temperature (optimum at 30-40 degrees C) dependent. Glucose transport was also inhibited by citrate, N6-substituted adenines (cytokinins), and iodine. None of these agents penetrated the cell membrane within the brief (1-3-min) period in which glucose transport was measured. In every case, transport was inhibited within 10 s (the shortest time in which measurements could be made). When cells were osmotically shocked to release a cell-wall membrane phosphorylated proteoglycan (PPG), they became incapable of transporting glucose for several hours until new PPG material was reisolable from the membrane by osmotic-shock treatment. The osmotically shocked cells could not transport glucose or deoxyglucose. No glucose-binding protein was detected in the shock fluid. Practically all of the glucose transported within 1-2 min was recovered as glucose-6-phosphate. No other phosphorylated sugar was detected suggesting that glucose may be phosphorylated in transport. Related studies have shown that citrate removed calcium bound by PPG; N6-substituted adenines were bound by PPG while three polyphosphorylated dinucleosides, HS3, HS2, and HS1, were displaced from it. Iodine formed stable complexes with the HS compounds. All of these agents inhibited glucose transport without entering the cell. It is therefore possible that HS compounds, calcium and PPG may be involved in maintaining the cell membrane in proper form for glucose transport.  相似文献   

8.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

9.
Colchicine inhibits glucose oxidation and the uptake of 2-deoxy-D-glucose in fat cell ghosts but has no effect on glucose oxidation by fat cell homogenates. This inhibition is rapid, reversible, and temperature-independent. Insulin-stimulated glucose oxidation and 2-deoxy-D-glucose transport are also inhibited by colchicine to an extent comparable to the basal processes.  相似文献   

10.
The regulation of glucose transport into cultured brain cells during glucose starvation was studied. On glucose deprivation for 40 h, 2-deoxy-D-glucose (2-DG) uptake was stimulated twofold in neuronal cells but was not changed significantly in astrocytes. On refeeding, the increased activity of neuronal cells rapidly returned to the basal level, an observation indicating that the effect of glucose starvation was reversible. The increase was due solely to change in the Vmax, a finding suggesting that the number of glucose transporters on the plasma membrane is increased in starved cells. Cycloheximide inhibited this increase. In the presence of cycloheximide, the activity of 2-DG uptake of starved cells remained constant for 12 h and then slowly decreased, whereas that of fed cells decreased rapidly. These findings suggest that glucose starvation regulates glucose transport by changing the rate of net synthesis of the transporter in neuronal cells in culture.  相似文献   

11.
The glucose carrier of Saccharomyces cerevisiae transports the phosphorylatable sugars glucose, mannose, fructose and 2-deoxy-D-glucose (2-dGlc) and the non-phosphorylatable sugar 6-deoxy-D-glucose (6-dGlc). Reduction of the ATP concentration by, for example, incubating cells with antimycin A, results in a decrease in uptake of 2-dGlc and fructose. These uptake velocities can be increased again by raising the ATP level. These results establish a role of ATP in sugar transport. Transport of glucose and mannose is less affected by changes in the ATP concentration than 2-dGlc and fructose uptake, while the 6-dGlc transport is independent of the amount of ATP in the cells. Also, reduction of the kinase activity by incubation with xylose diminished transport of 2-dGlc and fructose, while the uptake of glucose and mannose remained unchanged. It is discussed that these results are due to transport-associated phosphorylation with ATP as substrate and the hexokinases and the glucokinase as phosphorylating enzymes.  相似文献   

12.
Glucose uptake by Bacteroides succinogenes S85 was measured under conditions that maintained anaerobiosis and osmotic stability. Uptake was inhibited by compounds which interfere with electron transport systems, maintenance of proton or metal ion gradients, or ATP synthesis. The most potent inhibitors were proton and metal ionophores. Oxygen strongly inhibited glucose uptake. Na+ and Li+, but not K+, stimulated glucose uptake. A variety of sugars, including alpha-methylglucoside, did not inhibit glucose uptake. Only cellobiose and 2-deoxy-D-glucose were inhibitory, but neither behaved as a competitive inhibitor. Metabolism of both sugars appeared to be responsible for the inhibition. Cells grown in cellobiose medium transported glucose at one-half the rate of glucose-grown cells. Spheroplasts transported glucose as well as whole cells, indicating glucose uptake is not dependent on a periplasmic glucose-binding protein. Differences in glucose uptake patterns were detected in cells harvested during the transition from the lag to the log phase of growth compared with cells obtained during the log phase. These differences were not due to different mechanisms for glucose uptake in the cell types. Based on the results of this study, B. succinogenes contains a highly specific, active transport system for glucose. Evidence of a phosphoenolpyruvate-glucose phosphotransferase system was not found.  相似文献   

13.
SYNOPSIS. The glucose transport system in Leishmania tropica promastigotes was characterized by the use of labeled 2-deoxy-D-glucose (2-DOG), a nonmetabolizable glucose analog. The uptake system has a Q10 of 2 and a heat of activation of 10.2 kcal/mole. The glucose transport system is subject to competitive inhibition by 2-DOG, glucosamine, N-acetyl glucosamine, mannose, galactose, and fructose which suggests that substitutions in the hexose chain at carbons 2 and 4 do not affect carrier specificity. In contrast, changes at carbon 1 (α-methyl-D-glucoside, 1,5-anhydroglucitol) and carbon 3 (3–0-methyl glucose) lead to loss of carrier affinity since these sugars do not compete for the glucose carrier. Sugars that compete with the glucose carrier have one common feature—they all exist in the pyranose form in solution. The carrier for D-glucose does not interact with L-glucose or any of the pentose sugars tested. Uptake of 2-DOG is inhibited by glycerol. This inhibition, however, is noncompetitive; it is evident, therefore, that glucose and glycerol do not compete for the same carrier. Glycerol does not repress the glucose carrier since cells grown in presence of glycerol transport the sugar normally.  相似文献   

14.
The intracellular C-terminal domain is diverse in size and amino acid sequence among facilitative glucose transporter isoforms. The characteristics of glucose transport are also divergent, and GLUT2 has far higher Km and Vmax values compared with GLUT1. To investigate the role of the intracellular C-terminal domain in glucose transport, we expressed in Chinese hamster ovary cells the mutated GLUT1 protein whose intracellular C-terminal domain was replaced with that of GLUT2 by means of engineering the chimeric cDNA. Cytochalasin B, for which GLUT2 protein has much lower affinity, bound to this chimeric protein in a fashion similar to GLUT1. In contrast, greater transport activity was observed in this chimeric glucose transporter compared with the wild-type GLUT1 at 10 mM 2-deoxy-D-glucose concentration. The kinetic studies on 2-deoxy-D-glucose uptake revealed a 3.8-fold increase in Km and a 4.3-fold increase in Vmax in this chimeric glucose transporter compared with the wild-type GLUT1. Thus, replacement of the intracellular C-terminal domain confers the GLUT2-like property on the glucose transporter. These results strongly suggest that the diversity of intracellular C-terminal domain contributes to the diversity of glucose transport characteristics among isoforms.  相似文献   

15.
G W Gould  H M Thomas  T J Jess  G I Bell 《Biochemistry》1991,30(21):5139-5145
We describe the functional expression of three members of the family of human facilitative glucose transporters, the erythrocyte-type transporter (GLUT 1), the liver-type transporter (GLUT 2), and the brain-type transporter (GLUT 3), by microinjection of their corresponding mRNAs into Xenopus oocytes. Expression was determined by the appearance of transport activity, as measured by the transport of 3-O-methyl-D-glucose or 2-deoxy-D-glucose. We have measured the Km for 3-O-methyl-D-glucose of GLUTs 1, 2, and 3, and the results are discussed in light of the possible roles for these different transporters in the regulation of blood glucose. The substrate specificity of these transporter isoforms has also been examined. We show that, for all transporters, the transport of 2-deoxy-D-glucose is inhibited by D-but not by L-glucose. In addition, both D-galactose and D-mannose are transported by GLUTs 1-3 at significant rates; furthermore, GLUT 2 is capable of transporting D-fructose. The nature of the glucose binding sites of GLUTs 1-3 was investigated by using hexose inhibition of 2-deoxy-D-glucose uptake. We show that the characteristics of this inhibition are different for each transporter isoform.  相似文献   

16.
Treatment of glucose-grown L6 rat myoblasts with rabbit or sheep anti-(L6-rat myoblast) antibody for 35 min or glucose starvation for at least 8 h results in a 2-fold increase in the Vmax. of 2-deoxy-D-glucose (dGlc) and 3-O-methyl-D-glucose uptake. In both cases, apparent transport affinities were not affected. Furthermore, once stimulation has occurred, further increases in hexose uptake could not be produced. Assays of antibody binding to whole cells suggested that the antibody is not internalized but remains bound on the cell surface. To elucidate the site and mechanism of antibody action, plasma-membrane vesicles from L6 cells were prepared. Anti-L6 antibody was found to cause a time- and dosage-dependent stimulation of dGlc transport in these vesicles. Maximum activation was achieved after 30 min exposure. This antibody-mediated activation could be inhibited by treatment of vesicles with various proteinase inhibitors. Treatment of vesicles with trypsin was also found to activate dGlc transport to levels observed with antibody. These results are virtually identical with those obtained with whole cells and suggest that antibody-mediated activation of hexose transport results from interaction of antibody with a specific membrane component(s).  相似文献   

17.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

18.
The mechanism of glucose entry into human vascular endothelial cells was studied in monolayer cultures of normal (primary) and virally (SV40) transformed umbilical vein endothelium. Radioisotopic uptake studies with the glucose analogues 2-deoxy-D-glucose, and 3-O-methyl-D-glucose, and the nonmetabolizable stereoisomer L-glucose, indicated the presence of a saturable, stereospecific hexose carrier mechanism in both cell types. In other experiments with D-glucose and 3-O-methyl-D-glucose, the phenomenon of countertransport was demonstrable. Hexose transport was not affected by KCN, dinitrophenol, or ouabain, but was inhibited by phloretin and phlorizin in a pattern consistent with facilitated diffusion. Kinetic constants were obtained for both 2-deoxy-D-glucose and 3-O-methyl-D-glucose uptake. Similar Km values (range, 3.3-4.7 mM) were noted with normal and transformed cells, whereas the apparent Vmax was 0.56 nmol/microliter cytosol/minute for primary cells and 1.7-2.5 nmol/mu cytosol/minute for transformed cells. Under standard culture conditions, as well as following 18 hours of serum deprivation, insulin at concentrations up to 10(-5) M did not appear to influence hexose uptake in either cell type. Metabolism of 14C(U)-D-glucose to 14CO2 also was not stimulated by insulin. The presence of an insulin-insensitive, facilitated transport system for glucose in vascular endothelium has relevance for glucose metabolism in this tissue, and potentially for the association of certain vascular diseases (e.g., diabetic microangiopathy, atherosclerosis) with altered glucose homeostasis.  相似文献   

19.
Cytochalasin B competitively inhibits the transport of 2-deoxy-D-glucose and thymidine in a number of different cell lines (Novikoff rat hepatoma cells, mouse L, S180 and Ki-MSV-transformed BALB/3T3 cells, and human HeLa cells). The apparent Km values for the transport of these substrates as well as the apparent Ki values for the inhibition by cytochalasin B are very similar for the various cell lines, and the effect is readily and completely reversed by removal of the chemical. Thymidine transport by Chinese hamster ovary cells however, is little affected by cytochalasin B, whereas the transport of 2-deoxy-D-glucose, uridine and guanine by these cells is competitively inhibited to about the same extent as in other cell lines. In addition and concomitant with the inhibition of cytokinesis and an alteration in cell shape, cytochalasin B also impairs and delays the formation of functional transport sites for thymidine, guanine and choline in synchronized populations of Novikoff cells without affecting the apparent affinities of the transport systems for their substrates. This effect is unrelated to the direct inhibition of the transport processes, since the drug does not directly inhibit choline transport and has no effect on the formation of 2-deoxy-D-glucose transport sites in spite of the fact that it strongly inhibits the transport of this substrate. The inhibition of functional transport sites may be due to the induction of a structural alteration in the membrane by cytochalasin B which impairs the insertion of new proteins of certain but not all transport systems into the membrane.  相似文献   

20.
Transport of α-aminoisobutyric acid in cultured hepatocytes is temperature- and energy-dependent, whereas transport of 2-deoxy-D-glucose is not energy-dependent. In early cultures of hepatocytes (day 2) on a collagen gel/nylon mesh, the cells contain few microfilaments and the transport of amino acids and glucose is 5–7 times more than in late cultures of hepatocytes (day 6) which contain an apical, extensive accumulation of microfilaments. Cytochalasin D has little effect on the transport of amino acids and glucose in day 2 cultures of hepatocytes, but enhances transport of both compounds in day 6 cultures. These findings suggest that the microfilament accumulation in cultured hepatocytes inhibits transport of amino acids and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号