首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

2.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

3.
A significant inactivation of red blood cell glutathione peroxidase (25% less than the physiological value) was observed after exposure of intact erythrocytes to 2 mM divicine (an autoxidizable aminophenol from Vicia faba seeds) and 2 mM ascorbate for 3 h at 37 degrees C. Addition of catalase and conversion of Hb to the carbomonoxy derivative resulted in protection against enzyme inactivation. Oxidation of Hb was a concurrent phenomenon, and augmented the inactivating effect. In hemolysates, much stronger effects were observed at shorter times (2 h); divicine was effective also without ascorbate, and the presence of reductants (ascorbate or glutathione or NADPH) enhanced its inactivating power. Of the other antioxidant enzymes, superoxide dismutase was unaffected under the same experimental conditions. Catalase was found to be much less sensitive to the inactivation; it was almost unaffected in experiments with intact erythrocytes and specifically protected by NADPH in experiments with hemolysates. This specific damage of glutathione peroxidase, apparently involving interaction of H2O2 and HbO2, may be related to the pathogenesis of hemolysis in favism.  相似文献   

4.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

5.
Ninety-six castrated boars (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which was replicated three times with eight pigs. The groups received the same basal diet supplemented with 0, 5, 10, and 20 mg/kg lead, respectively. The malondialdehyde and glutathione levels, antioxidant enzymes activities, and zinc/copper superoxide dismutase (Zn/Cu SOD) mRNA content in the liver were determined to evaluate the lead hepatic intoxication caused by the lead. Results showed the increased lipid peroxides level and the reduced glutathione content, along with a concomitant decrease in the activities of superoxide dismutase, catalase, and glutathione peroxidase. Moreover, the level of hepatic Zn/Cu SOD mRNA was also significantly reduced. We suggest potential mechanism for lead intoxication in liver as follows: lead causes parallel decrease in Zn/Cu SOD mRNA and activities of antioxidant enzymes, leading to the declined ability of scavenging free radicals with excessive production of lipid peroxides, which seriously damages the hepatic structure and function.  相似文献   

6.
The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.  相似文献   

7.
A significant inactivation of red blood cell glutathione peroxidase (25% less than the physiological value) was observed after exposure of intact erythrocytes to 2 mM divicine (an autoxidizable aminophenol from Vicia faba seeds) and 2 mM ascorbate for 3 h at 37°C. Addition of catalase and conversion of Hb to the carbomonoxy derivative resulted in protection against enzyme inactivation. Oxidation of Hb was a concurrent phenomenon, and augmented the inactivating effect. In hemolysates, much stronger effects were observed at shorter times (2 h); divicine was effective also without ascorbate, and the presence of reductants (ascorbate or glutathione or NADPH) enhanced its inactivating power. Of the other antioxidant enzymes, superoxide dismutase was unaffected under the same experimental conditions. Catalase was found to be much less sensitive to the inactivation; it was almost unaffected in experiments with intact erythrocytes and specifically protected by NADPH in experiments with hemolysates. This specific damage of glutathione peroxidase, apparently involving interaction of H2O2 and HbO2, may be related to the pathogenesis of hemolysis in favism.  相似文献   

8.
The effects of Zn deficiency on antioxidant responses of two pea (Pisum sativum L.) genotypes, a Zn-efficient IPFD-99-13 and Zn-inefficient KPMR-500, grown in sand culture were studied. In the pea genotype KPMR-500, Zn deficiency decreased dry matter yield, tissue Zn concentration, and antioxidant enzyme activities istronger than in the genotype IPFD-99-13. Genotype IPFD-99-13 developed more efficient antioxidant system to scavenge ROS than genotype KPMR-500. Zinc deficiency produced oxidative damage to pea genotypes due to enhanced accumulation of TBARS and H2O2 and decreased activities of antioxidant enzymes (Cu/Zn superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)). In the leaves of IPFD-99-13 genotype, the higher activity of ROS-scavenging enzyme, e.g., SOD, CAT, POD, and glutathione reductase, and antioxidants, such as ascorbate and non-protein thiols, led to the lower accumulation of H2O2 and lipid peroxides. These results suggest that, by maintaining an efficient antioxidant defense system, the IPFD-99-13 genotype shows a lower sensivity to Zn deficiency than the KPMR-500 genotype.  相似文献   

9.
The activities of Cu,Zn superoxide dismutase, glutathione peroxidase, catalase and glutathione reductase in neuronal and glial cell-enriched fractions obtained from the cerebral cortex of rat brain during aging (15, 30, 90, 350, 750 days of age) were assayed. Our results showed that glutathione peroxidase, catalase and glutathione reductase activities varied little during the examined periods. Only the Cu,Zn superoxide dismutase activity decreased notably from 15th to 750th day of age in both neuronal and glial cells, moreover the activities of all enzymes studied were always detected at lower levels in neuronal cells with respect to glial cells. In agreement with diminished SOD activity, the lipid peroxidation showed an elevated increase with aging; this fact is more evident in neuronal than in glial cells. In conclusion our data show that Cu,Zn superoxide dismutase is the most affected antioxidant enzymatic system of brain aging and it could be responsible for the increased lipid peroxidation in both cell types examined.A preliminary report of these results was presented at the 19th Meeting F.E.B.S. Rome July 2–7, 1989.  相似文献   

10.
11.
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.  相似文献   

12.
During the period of senescence of apricot leaves changes in photosynthetic pigment contents and in the activities of some antioxidant enzymes (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) were analysed. Significant changes in pigment contents were, in most cases, correlated with changes in activities of the antioxidant enzymes. Modifications in superoxide dismutase and catalase isoform patterns were also observed during the progression of senescence. Both enzyme activities and isoenzyme patterns proved to be genotype-dependent.  相似文献   

13.
Abstract

The effects of increasing salt concentrations on the growth, electrolyte leakage, lipid peroxidation, and major antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) of borage plants were investigated. Plants were grown in half strength of Hoagland nutrient solution added with 0, 25, 50, and 75 mM of NaCl. Most measured parameters were affected by salinity. Increasing salt levels caused a significant reduction in leaf area, stem length, stem diameter, flower number, and dry masses of different organs. Growth of borage plants, in terms of dry weight, was affected. As a consequence of salinity stress, lipid peroxidation and membrane permeability was increased. Antioxidant activity showed an increase in the activity of superoxide dismutase, a non-induced activity of catalase and ascorbate peroxidase, and a slight increase in glutathione reductase activity. The results indicate that borage plants appear to be sensitive to salt stress, since enzymes related to antioxidant enzymatic defense system in treated leaves should be highly active.  相似文献   

14.
The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate–glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil.  相似文献   

15.
Seedlings of spinach were grown in Hoagland's medium containing 0, 20, 40, 60, 80, 100 microM PbCl2, respectively, for 4 weeks. Chloroplasts were assayed for overproduction of reactive oxygen species (ROS) such as superoxide radicals (O2(*-)) and hydrogen peoxide (H2O2) and of lipid peroxide (malonyldialdehyde) and for activities of the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase and glutathione content, oxygen-evolving rate, and chlorophyll content. Increase in both ROS and lipid peroxide content and reduction in photosynthesis and activities of the antioxidant defense system indicated that spinach chloroplast underwent a stress condition due to an oxidative attack. Seedling growth cultivated in containing Pb2+ media was significantly inhibited. The results imply that spinach chloroplast was not able to tolerate the oxidative stress induced by Pb2+ due to having no effective antioxidant defense mechanism.  相似文献   

16.
以云烟87植株为材料,通过覆盖白、红、黄、蓝、紫色滤膜获得不同光质,于大田条件下研究了光质对烟草叶片生长发育过程中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽过氧化物酶(GPX)、谷胱甘肽还原酶(GR)等抗氧化酶活性,抗氧化剂谷胱甘肽(GSH)和抗坏血酸(AsA)以及丙二醛(MDA)含量的影响.结果表明,在烟草植株第11片叶生长发育的7~70 d内,其抗氧化酶活性和抗氧化物质含量呈现先升高后下降的变化趋势.与白光(对照)相比,黄光诱导烟草叶片SOD、CAT、APX和GR活性升高,以及AsA和GSH含量增加;而红光诱导APX和GR活性上升,以及GSH和AsA含量升高;但紫光却使SOD、CAT、POD、GR和GPX活性下降,GSH和AsA含量降低,而蓝光则使所有抗氧化酶活性和抗氧化物质含量降低.紫光和蓝光处理的烟草叶片中MDA含量较高,而黄光和红光处理的则较低.总体而言,在大田条件下,相对红光和黄光而言,蓝光和紫光处理下的烟草叶片更容易发生光氧化胁迫.  相似文献   

17.
Oxyradicals have been implicated in ozone (O3) toxicity and in other oxidant stress. In this study, we investigated the effects of O3 on the biosynthesis of the antioxidant enzymes catalase and superoxide dismutase in Escherichia coli to determine their role in the defense against ozone toxicity. Inhibition of growth and loss of viability were observed in cultures exposed to ozone. Results also showed an increase in the activities of catalase and superoxide dismutase in cultures exposed to ozone, which was shown to be due to true induction rather than activation of preexisting apoproteins. Cessation of O3 exposure resulted in 30 min of continual high rate of catalase biosynthesis followed by a gradual decrease in the level of the enzyme approaching that of control cultures. This decrease was attributed to a concomitant cessation of de novo enzyme synthesis and dilution of preexisting enzyme by cellular growth. Ozonation of cell-free extracts showed that superoxide dismutase and catalase are subject to oxidative inactivation by ozone. In vivo induction of these enzymes may represent an adaptive response evolved to protect cells against ozone toxicity.  相似文献   

18.
1. Antioxidant enzyme activity profiles in red cells of man, rabbit, quail, pig and rat have been investigated and found to exhibit striking differences. 2. No direct correlations between activities of "functionally coupled" enzymes (superoxide dismutase/catalase and glutathione peroxidase/glutathione reductase) were apparent, suggesting their independent regulation. 3. However, activities of red cell catalase and glutathione peroxidase in the various species studied were inversely correlated. 4. This was most evident in quail red cells, which showed negligible catalase activity but the highest levels of glutathione peroxidase of all the species examined. 5. A significant positive correlation between catalase and glutathione reductase activities was also demonstrated. 6. This may be relevant to the suggestion that the binding of NADPH to catalase may serve to decrease the intracellular inactivation of this reducing cofactor which may be limiting in the glutathione reductase reaction. 7. Basal levels of glutathione, which have been claimed to be limiting for the glutathione peroxidase reaction, were found to correlate positively with the activity of this enzyme in red cells. 8. Myocardial tissues also exhibited species-related differences in antioxidant enzyme profiles but these did not bear any obvious relationship to patterns observed in the corresponding red cells.  相似文献   

19.
to-baccoBright Yellow 2 (BY-2) suspension culture to understand the mechanisms of metal resistance in plant cells.We have analysed superoxide dismutase, catalase, and ascorbate peroxidase enzyme activities and superoxidedismutase-isoforms by isoelectric focusing gels in tobacco cells grown at two different toxic concentrations ofeach of the transition metals: copper, iron, manganese and zinc. Exposure of tobacco cells to these metals causedchanges in total superoxide dismutase activity in a different manner, depending on the metal assayed: after cop-perand manganese treatments, total superoxide dismutase activity was enhanced, while it was reduced after ironand zinc exposure. Superoxide dismutase-isoforms were affected by the metal used, and a Fe-SOD band with thesame isoelectric point as a Cu, Zn-SOD from non-treated cells, was induced after iron and zinc treatments. Cu,Zn-SODs were present in all metal-treatments whereas Mn-SOD was not detected in any case. Concerning otherantioxidant enzymes tested, such as catalase and ascorbate peroxidase, the latter showed a remarkable increase inactivity in response to copper treatments and catalase activity was enhanced after iron and with the lowest man-ganeseconcentration. Lipid peroxidation was increased after each metal treatment, as an indication of the oxi-dativedamage caused by metal concentration assayed in tobacco cells. These results suggest that an activation ofsome antioxidant enzymes in response to oxidative stress induced by transition metals is not enough to confertolerance to metal accumulation.  相似文献   

20.
Despite extensive interest in the rodent nasal cavity as a target organ for toxicity, there is very limited information regarding nasal defenses against oxidative stress and xenobiotic-derived oxidants. Using immunohistochemistry, we have examined the distribution of Cu,Zn and Mn superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidase, and DT-diaphorase in rat nasal tissues. In addition, we have determined the concentrations of ascorbate and alpha-tocopherol and the activities of SOD (combined Cu,Zn and Mn forms), catalase, GSH peroxidase, GSH reductase, and DT-diaphorase in nasal respiratory epithelium (RE), olfactory epithelium (OE), and in lung. Immunohistochemistry demonstrated that all four enzymes were similarly distributed, with the greatest staining intensity in dorsal-medial regions of the nasal cavity. In respiratory epithelium, ciliated columnar cells and subepithelial glands stained positively, while in olfactory tissue the enzymes were detected in the sustentacular cells and Bowman's glands. With the exception of SOD, enzyme activities were higher in RE than OE, while concentrations of ascorbate and alpha-tocopherol were higher in OE than RE. With the exception of catalase, nasal activities were either higher than or comparable to those of the lung. Thus, the rat nasal cavity appears to be well protected against oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号