首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The FtsK translocase pumps dsDNA directionally at ~5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.  相似文献   

2.
Escherichia coli FtsK is a multifunctional protein that couples cell division and chromosome segregation. Its N-terminal transmembrane domain (FtsK(N)) is essential for septum formation, whereas its C-terminal domain (FtsK(C)) is required for chromosome dimer resolution by XerCD-dif site-specific recombination. FtsK(C) is an ATP-dependent DNA translocase. In vitro and in vivo data point to a dual role for this domain in chromosome dimer resolution (i) to directly activate recombination by XerCD-dif and (ii) to bring recombination sites together and/or to clear DNA from the closing septum. FtsK(N) and FtsK(C) are separated by a long linker region (FtsK(L)) of unknown function that is highly divergent between bacterial species. Here, we analysed the in vivo effects of deletions of FtsK(L) and/or of FtsK(C), of swaps of these domains with their Haemophilus influenzae counterparts and of a point mutation that inactivates the walker A motif of FtsK(C). Phenotypic characterization of the mutants indicated a role for FtsK(L) in cell division. More importantly, even though Xer recombination activation and DNA mobilization both rely on the ATPase activity of FtsK(C), mutants were found that can perform only one or the other of these two functions, which allowed their separation in vivo for the first time.  相似文献   

3.
Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKγ regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.  相似文献   

4.
Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6 degrees counterclockwise from the B. subtilis terminus of replication (172 degrees ), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPbeta-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains.  相似文献   

5.
This article is a perspective on the separation of the complementary strands of DNA during replication. Given the challenges of DNA strand separation and its vital importance, it is not surprising that cells have developed many strategies for promoting unlinking. We summarize seven different factors that contribute to strand separation and chromosome segregation. These are: (1) supercoiling promotes unlinking by condensation of DNA; (2) unlinking takes place throughout a replicating domain by the complementary action of topoisomerases on precatenanes and supercoils; (3) topological domains isolate the events near the replication fork and permit the supercoiling-dependent condensation of partially replicated DNA; (4) type-II topoisomerases use ATP to actively unlink DNA past the equilibrium position; (5) the effective DNA concentration in vivo is less than the global DNA concentration; (6) mechanical forces help unlink chromosomes; and (7) site-specific recombination promotes unlinking at the termination of replication by resolving circular dimeric chromosomes.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, alpha, beta and gamma. FtsKalphabeta are necessary and sufficient for ATP hydrolysis-dependent DNA translocation, which is modulated by FtsKgamma through its interaction with KOPS. By solving the FtsKgamma structure by NMR, we show that gamma is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the gamma domain. Mutated proteins with substitutions in the FtsKgamma DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.  相似文献   

7.
The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region ( ter ) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif , located within ter . The frequency of chromosome dimer formation is ∼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ∼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre– loxP recombination replaces XerCD– dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter .  相似文献   

8.
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.  相似文献   

9.
Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain gamma. The crystal structure of three FtsKgamma domains bound to 8 bp KOPS DNA demonstrates how three gamma domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three gamma domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA.  相似文献   

10.
Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.  相似文献   

11.
Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.  相似文献   

12.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

13.
Ip SC  Bregu M  Barre FX  Sherratt DJ 《The EMBO journal》2003,22(23):6399-6407
DNA replication results in interlinked (catenated) sister duplex molecules as a consequence of the intertwined helices that comprise duplex DNA. DNA topoisomerases play key roles in decatenation. We demonstrate a novel, efficient and directional decatenation process in vitro, which uses the combination of the Escherichia coli XerCD site-specific recombination system and a protein, FtsK, which facilitates simple synapsis of dif recombination sites during its translocation along DNA. We propose that the FtsK-XerCD recombination machinery, which converts chromosomal dimers to monomers, may also function in vivo in removing the final catenation links remaining upon completion of DNA replication.  相似文献   

14.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

15.
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.  相似文献   

16.
Escherichia coli FtsK protein couples cell division and chromosome segregation. It is a component of the septum essential for cell division. It also acts during chromosome dimer resolution by XerCD-specific recombination at the dif site, with two distinct activities: DNA translocation oriented by skewed sequence elements and direct activation of Xer recombination. Dimer resolution requires that the skewed elements polarize in opposite directions 30-50 kb on either side of dif. This constitutes the DIF domain, approximately coincident with the region where replication terminates. The observation that the ftsK1 mutation increases recombination near dif was exploited to determine whether the chromosome region on which FtsK acts is limited to the DIF domain. A monitoring of recombination activity at multiple loci in a 350 kb region to the left of dif revealed (i) zones of differing activities unconnected to dimer resolution and (ii) a constant 10-fold increase of recombination in the 250 kb region adjacent to dif in the ftsK1 mutant. The latter effect allows definition of an FTSK domain whose total size is at least fourfold that of the DIF domain. Additional analyses revealed that FtsK activity responds to polarization in the whole FTSK domain and that displacement of the region where replication terminates preserves differences between recombination zones. Our interpretation is that translocation by FtsK occurs mostly on DNA belonging to a specifically organized domain of the chromosome, when physical links between either dimeric or still intercatenated chromosomes force this DNA to run across the septum at division.  相似文献   

17.

Background

The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV.

Methodology

We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a ∼400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPS-recognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions.

Significance

Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last steps of chromosome segregation and to their coupling with cell division by FtsK.  相似文献   

18.
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.  相似文献   

19.
FtsK is a multifunctional, multidomain protein that acts to co-ordinate chromosome unlinking, segregation and cell division. In this issue of Molecular Microbiology, the report by Dubarry et al. reveals new insight into the surprisingly complex relationship between the different activities of FtsK. The new study makes extensive use of fusion proteins to highlight the role of the FtsK 'linker' domain in helping to co-ordinate these processes. This, taken together with previous studies, suggests that FtsK is intimately involved in septum constriction, physically contacting several other divisome proteins. Further, it is attractive to speculate that FtsK can regulate the late stages of septation to act as a checkpoint to ensure DNA is fully cleared from the septum before it is allowed to close, as well as being the driving force to unlink the chromosomes and segregate the DNA away from the septum.  相似文献   

20.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号