首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
S Ramachandran  D D Thomas 《Biochemistry》1999,38(28):9097-9104
We have used time-resolved phosphorescence anisotropy (TPA) to study the rotational dynamics of chicken gizzard regulatory light chain (RLC) bound to scallop adductor muscle myofibrils in key physiological states. Native RLC from scallop myofibrils was extracted and replaced completely with gizzard RLC labeled specifically at Cys 108 with erythrosin iodoacetamide (ErIA). The calcium sensitivity of the ATPase activity of the labeled myofibril preparation was quite similar to that of the native sample, indicating that the ErIA-labeled RLC is functionally bound to the myosin head. In rigor (in the absence of ATP, when all the myosin heads are rigidly bound to the thin filament), a slight decay was observed in the first few microseconds, followed by no change in the anisotropy. This indicates small-amplitude restricted motions of the RLC or the entire LC domain of myosin. Addition of calcium to rigor restricts these motions further. Relaxation with ATP (no Ca) causes a large decay in the anisotropy, indicating large-amplitude rotational motion with correlation times of 5-50 micros. Further addition of calcium, to induce contraction, resulted in a decrease in the rate and amplitude of anisotropy decay. In particular, there is clear evidence for a slow rotational motion with a correlation time of approximately 300 micros, which is not present either in rigor or relaxation. This indicates rotational motion that specifically correlates with force generation. The changes in the rotational dynamics of the light-chain domain in rigor, relaxation, and contraction support earlier work based on probes of the catalytic domain that muscle contraction is accompanied by a disorder-to-order transition of the myosin head. However, the motions of the LC domain are different from those of the catalytic domain, which indicates rotation of the two domains relative to each other.  相似文献   

2.
The position of the myosin head with respect to the filament backbone is thought to be a function of pH, ionic strength (micro) and the extent of regulatory light chain (RLC) phosphorylation [Harrington (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 5066-5070]. The object of this study is to examine the dynamics of the proximal part of the myosin head (regulatory domain) which accompany the changes in head disposition. The essential light chain was labeled at Cys177 with the indanedione spin-label followed by the exchange of the labeled proteins into myosin. The mobility of the labeled domain was investigated with saturation transfer electron paramagnetic resonance in reconstituted, synthetic myosin filaments. We have found that the release of the heads from the myosin filament surface by reduction of electrostatic charge is accompanied by a 2-fold increase in the mobility of the regulatory domain. Phosphorylation of the RLC by myosin light chain kinase resulted in a smaller 1. 5-fold increase of motion, establishing that the head disordering observed by electron microscopy [Levine et al. (1996) Biophys. J. 71, 898-907] is due to increased mobility of the heads. This result indirectly supports the hypothesis that the RLC phosphorylation effect on potentiation of force arises from a release of heads from the filament surface and a shift of the heads toward actin.  相似文献   

3.
Myosin light chain kinase (MLCK) phosphorylates the light chain of smooth muscle myosin enabling its interaction with actin. This interaction initiates smooth muscle contraction. MLCK has another role that is not attributable to its phosphorylating activity, i.e., it inhibits the ATP-dependent movement of actin filaments on a glass surface coated with phosphorylated myosin. To analyze the inhibitory effect of MLCK, the catalytic domain of MLCK was obtained with or without the regulatory sequence adjacent to the C-terminal of the domain, and the inhibitory effect of the domain was examined by the movement of actin filaments. All the domains work so as to inhibit actin filament movement whether or not the regulatory sequence is included. When the domain includes the regulatory sequence, calmodulin in the presence of calcium abolishes the inhibition. Since the phosphorylation reaction is not involved in regulating the movement by MLCK, and a catalytic fragment that shows no kinase activity also inhibits movement, the kinase activity is not related to inhibition. Higher concentrations of MLCK inhibit the binding of actin filaments to myosin-coated surfaces as well as their movement. We discuss the dual roles of the domain, the phosphorylation of myosin that allows myosin to cross-bridge with actin and a novel function that breaks cross-bridging.  相似文献   

4.
To study the orientation and dynamics of myosin, we measured fluorescence polarization of single molecules and ensembles of myosin decorating actin filaments. Engineered chicken gizzard regulatory light chain (RLC), labeled with bisiodoacetamidorhodamine at cysteine residues 100 and 108 or 104 and 115, was exchanged for endogenous RLC in rabbit skeletal muscle HMM or S1. AEDANS-labeled actin, fully decorated with labeled myosin fragment or a ratio of approximately 1:1000 labeled:unlabeled myosin fragment, was adhered to a quartz slide. Eight polarized fluorescence intensities were combined with the actin orientation from the AEDANS fluorescence to determine the axial angle (relative to actin), the azimuthal angle (around actin), and RLC mobility on the <10 ms timescale. Order parameters of the orientation distributions from heavily labeled filaments agree well with comparable measurements in muscle fibers, verifying the technique. Experiments with HMM provide sufficient angular resolution to detect two orientations corresponding to the two heads in rigor. Experiments with S1 show a single orientation intermediate to the two seen for HMM. The angles measured for HMM are consistent with heads bound on adjacent actin monomers of a filament, under strain, similar to predictions based on ensemble measurements made on muscle fibers with electron microscopy and spectroscopic experiments.  相似文献   

5.
In the presence of ATP, unphosphorylated smooth muscle myosin can form a catalytically inactive monomer that sediments at 10 Svedbergs (10 S). The tail of 10 S bends into thirds and interacts with the regulatory domain. ADP-P(i) is "trapped" at the active site, and consequently the ATPase activity is extremely low. We are interested in the structural basis for maintenance of this off state. Our prior photocross-linking work with 10 S showed that tail residues 1554-1583 are proximal to position 108 in the C-terminal lobe of one of the two regulatory light chains ( Olney, J. J., Sellers, J. R., and Cremo, C. R. (1996) J. Biol. Chem. 271, 20375-20384 ). These data suggested that the tail interacts with only one of the two regulatory light chains. Here we present data, using a photocross-linker on position 59 on the N-terminal lobe of the regulatory light chain (RLC), demonstrating that both regulatory light chains of a single molecule can cross-link to the light meromyosin portion of the tail. Mass spectrometric data show four specific cross-linked regions spanning residues 1428-1571 in the light meromyosin portion of the tail, consistent with cross-linking two RLC to one light meromyosin. In addition, we find that position 59 can cross-link internally to residues 42-45 within the same RLC subunit. The internal cross-link only forms in 10 S and not in unphosphorylated heavy meromyosin (lacking the light meromyosin), suggesting a structural rearrangement within the RLC attributed to the interaction of the tail with the head.  相似文献   

6.
Li XD  Saito J  Ikebe R  Mabuchi K  Ikebe M 《Biochemistry》2000,39(9):2254-2260
Recent findings have suggested that the interaction between the two heads is critical for phosphorylation-dependent regulation of smooth muscle myosin. We hypothesized that the interaction between the two regulatory light chains on two heads of myosin dictates the regulation of myosin motor function. To evaluate this notion, we engineered and characterized smooth muscle heavy meromyosin (HMM), which is composed of one entire HMM heavy chain and one motor domain truncated heavy chain containing the S2 rod and regulatory light chain (RLC) binding site, as well as the bound RLC (SMDHMM). SMDHMM was inactive for both actin-translocating activity and actin-activated ATPase activity in the dephosphorylated state, demonstrating that the interaction between the two RLC domains on the two heads and/or a motor domain and a RLC domain in a distinct head is sufficient for the inhibition of smooth muscle myosin motor activity. When phosphorylated, SMDHMM was activated for both actin-translocating activity and actin-activated ATPase activity; however, these activities were lower than those of double-headed HMM, implying partial release of inhibition by phosphorylation in SMDHMM and/or cooperativity between the two heads of smooth muscle myosin. The present results indicate that the RLC domain is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. On the other hand, similar to double-headed HMM, SMDHMM showed both "folded" and "extended" conformations, and the ratio of those conformations is dependent on ionic strength, suggesting that the RLC domain is sufficient to regulate the conformational transition in myosin.  相似文献   

7.
J Gollub  C R Cremo  R Cooke 《Biochemistry》1999,38(31):10107-10118
We have observed the effects of MgADP and thiophosphorylation on the conformational state of the light chain domain of myosin in skinned smooth muscle. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the orientation of spin probes attached to the myosin regulatory light chain (RLC). Two spectral states were seen, termed here "intermediate" and "final", that are distinguished by a approximately 24 degrees axial rotation of spin probes attached to the RLC. The two observed conformations are similar to those found previously for smooth muscle myosin S1; the final state corresponds to the major conformation of S1 in the absence of ADP, while the intermediate state corresponds to the conformation of S1 with ADP bound. Light chain domain orientation was observed as a function of the MgADP concentration and the extent of RLC thiophosphorylation. In rigor (no MgADP), LC domains were distributed equally between the intermediate state and the final state; upon addition of saturating (3.5 mM) MgADP, about one-third of the LC domains in the final state rotated approximately 20 degrees axially to the intermediate state. The progression of the change in populations was fit to a simple binding equation, yielding an apparent dissociation constant of approximately 110 microM for skinned smooth muscle fibers and approximately 730 microM for thiophosphorylated, skinned smooth muscle fibers. These observations suggest a model that explains the behavior of "latch bridges" in smooth muscle.  相似文献   

8.
Abalone myosin contains two kinds of light chain, regulatory light chain (LC2) and essential light chain (LC1) according to SDS-PAGE. Three distinct light chain bands were observed on polyacrylamide gel electrophoresis of purified abalone myosin in the presence of urea (urea-PAGE). The slower two components showed had mobility on SDS-PAGE and they also showed regulatory activity as the regulatory light chain. They were termed LC2-a and LC2-b in order of increasing mobility on urea-PAGE and isolated by DE-32 ion exchange column chromatography in the presence 8 M urea. The ratio of LC2-a and LC2-b in the central portion of adductor muscle of abalone (LC2-a: LC2-b = 7:3) was different from that (1:1) in the peripheral portion. These results suggest that the two light chains are isoforms of the regulatory light chain. The amino acid compositions of LC2-a and LC2-b were very similar to each other except for the Cys content. The UV absorption spectra were also quite similar, as were the UV difference absorption spectra induced by Ca2+. Phosphorylation was not detectable with the myosin light chain kinase of chicken gizzard. The Ca2+ concentration dependencies of Mg-ATPase activity of LC2-a or LC2-b hybridized abalone myosin (a-myosin, b-myosin) were similar to each other in the absence of rabbit F-actin, but differed in the presence of actin. The b-myosin had a higher maximum value of actomyosin ATPase activity and a lower apparent binding constant of actin and myosin than a-myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Reorientation of the regulatory domain of the myosin head is a feature of all current models of force generation in muscle. We have determined the orientation of the myosin regulatory light chain (RLC) using a spin-label bound rigidly and stereospecifically to the single Cys-154 of a mutant skeletal isoform. Labeled RLC was reconstituted into skeletal muscle fibers using a modified method that results in near-stoichiometric levels of RLC and fully functional muscle. Complex electron paramagnetic resonance spectra obtained in rigor necessitated the development of a novel decomposition technique. The strength of this method is that no specific model for a complex orientational distribution was presumed. The global analysis of a series of spectra, from fibers tilted with respect to the magnetic field, revealed two populations: one well-ordered (+/-15 degrees ) with the spin-label z axis parallel to actin, and a second population with a large distribution (+/-60 degrees ). A lack of order in relaxed or nonoverlap fibers demonstrated that regulatory domain ordering was defined by interaction with actin rather than the thick filament surface. No order was observed in the regulatory domain during isometric contraction, consistent with the substantial reorientation that occurs during force generation. For the first time, spin-label orientation has been interpreted in terms of the orientation of a labeled domain. A Monte Carlo conformational search technique was used to determine the orientation of the spin-label with respect to the protein. This in turn allows determination of the absolute orientation of the regulatory domain with respect to the actin axis. The comparison with the electron microscopy reconstructions verified the accuracy of the method; the electron paramagnetic resonance determined that axial orientation was within 10 degrees of the electron microscopy model.  相似文献   

10.
Li HC  Song L  Salzameda B  Cremo CR  Fajer PG 《Biochemistry》2006,45(19):6212-6221
Domain dynamics of the chicken gizzard smooth muscle myosin catalytic domain (heavy chain Cys-717) and regulatory domain (regulatory light chain Cys-108) were determined in the absence of nucleotides using saturation-transfer electron paramagnetic resonance. In unphosphorylated synthetic filaments, the effective rotational correlation times, tau(r), were 24 +/- 6 micros and 441 +/- 79 micros for the catalytic and regulatory domains, respectively. The corresponding amplitudes of motion were 42 +/- 4 degrees and 24 +/- 9 degrees as determined from steady-state phosphorescence anisotropy. These results suggest that the two domains have independent mobility due to a hinge between the two domains. Although a similar hinge was observed for skeletal myosin (Adhikari and Fajer (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 9643-9647. Brown et al. (2001) Biochemistry 40, 8283-8291), the latter displayed higher regulatory domain mobility, tau(r)= 40 +/- 3 micros, suggesting a smooth muscle specific mechanism of constraining regulatory domain dynamics. In the myosin monomers the correlation times for both domains were the same (approximately 4 micros) for both smooth and skeletal myosin, suggesting that the motional difference between the two isoforms in the filaments was not due to intrinsic variation of hinge stiffness. Heavy chain/regulatory light chain chimeras of smooth and skeletal myosin pinpointed the origin of the restriction to the heavy chain and established correlation between the regulatory domain dynamics with the ability of myosin to switch off but not to switch on the ATPase and the actin sliding velocity. Phosphorylation of smooth muscle myosin filaments caused a small increase in the amplitude of motion of the regulatory domain (from 24 +/- 4 degrees to 36 +/- 7 degrees ) but did not significantly affect the rotational correlation time of the regulatory domain (441 to 408 micros) or the catalytic domain (24 to 17 micros). These data are not consistent with a stable interaction between the two catalytic domains in unphosphorylated smooth muscle myosin filaments in the absence of nucleotides.  相似文献   

11.
Inter- and intradomain flexibility of the myosin head was measured using phosphorescence anisotropy of selectively labeled parts of the molecule. Whole myosin and the myosin head, subfragment-1 (S1), were labeled with eosin-5-iodoacetamide on the catalytic domain (Cys 707) and on two sites on the regulatory domain (Cys 177 on the essential light chain and Cys 154 on the regulatory light chain). Phosphorescence anisotropy was measured in soluble S1 and myosin, with and without F-actin, as well as in synthetic myosin filaments. The anisotropy of the former were too low to observe differences in the domain mobilities, including when bound to actin. However, this was not the case in the myosin filament. The final anisotropy of the probe on the catalytic domain was 0.051, which increased for probes bound to the essential and regulatory light chains to 0.085 and 0.089, respectively. These differences can be expressed in terms of a "wobble in a cone" model, suggesting various amplitudes. The catalytic domain was least restricted, with a 51 +/- 5 degrees half-cone angle, whereas the essential and regulatory light chain amplitude was less than 29 degrees. These data demonstrate the presence of a point of flexibility between the catalytic and regulatory domains. The presence of the "hinge" between the catalytic and regulatory domains, with a rigid regulatory domain, is consistent with both the "swinging lever arm" and "Brownian ratchet" models of force generation. However, in the former case there is a postulated requirement for the hinge to stiffen to transmit the generated torque associated by nucleotide hydrolysis and actin binding.  相似文献   

12.
In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long α-helical “heavy chain” stabilized by a “regulatory” light chain (RLC) and an “essential” light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca2+ to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca2+. Our results indicate that loss of Ca2+ abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.  相似文献   

13.
Recombinant DNA approaches have allowed us to probe the mechanisms by which the regulatory light chains (RLCs) regulate myosin function by identifying the functional importance of specific regions of the RLC molecule. For example, we have demonstrated that the presence of high-affinity Ca2+/Mg(2+)-binding site in the N-terminal domain of the RLC is essential for the regulation of myosin-actin interaction [Reinach, F. C., Nagai, K. & Kendrick-Jones, J. (1986) Nature 322, 80-83]. To explore further the role of this metal-binding site in the RLC and generate an RLC with a Ca(2+)-specific site, we constructed four chicken skeletal muscle myosin regulatory light chain hybrid 'genes'. In these, the first domain containing the high-affinity Ca2+/Mg(2+)-binding site in the RLC was replaced with that containing the lower-affinity, Ca(2+)-specific, regulatory site from troponin C (TnC). In two of these hybrids, we replaced only the Ca(2+)-binding EF hand, while in the other two the EF hand and the N-terminal helix of TnC were transplanted. These hybrids were expressed in Escherichia coli in high yields and the purified proteins were used in calcium-binding experiments to assay the affinity and specificity of the sites and incorporated into scallop myosin to assay their regulatory behaviour. The results obtained show that the calcium-binding site from TnC, when transplanted into the RLC backbone, had a low affinity although most of its specificity appeared to be retained. As a result, although the TnC/RLC hybrids bound to scallop myosin and were able to activate the MgATPase activity of scallop acto-myosin, they were unable to regulate it. These results are in agreement with our previous findings that occupancy of the Ca2+/Mg2+ site in the RLC is essential for regulation. Our results suggest that the specificity and affinity of the calcium-binding site in troponin C is dependent on both intra- and inter-domain interactions within troponin C and that these latter interactions appear to be missing when this binding site is transplanted into the light chain backbone.  相似文献   

14.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

15.
The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head–head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head–head interactions by an unknown mechanism. Computational modeling (Tama et al., 2005. J. Mol. Biol. 345, 837–854) suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin.  相似文献   

16.
The actin-activated ATPase activity of smooth muscle myosin and heavy meromyosin (smHMM) is regulated by phosphorylation of the regulatory light chain (RLC). Complete regulation requires two intact myosin heads because single-headed myosin subfragments are always active. 2D crystalline arrays of the 10S form of intact myosin, which has a dephosphorylated RLC, were produced on a positively charged lipid monolayer and imaged in 3D at 2.0 nm resolution by cryo-electron microscopy of frozen, hydrated specimens. An atomic model of smooth muscle myosin was constructed from the X-ray structures of the smooth muscle myosin motor domain and essential light chain and a homology model of the RLC was produced based on the skeletal muscle S1 structure. The initial model of the 10S myosin, based on the previous reconstruction of smHMM, was subjected to real space refinement to obtain a quantitative fit to the density. The smHMM was likewise refined and both refined models reveal the same asymmetric interaction between the upper 50 kDa domain of the "blocked" head and parts of the catalytic, converter domains and the essential light chain of the "free" head observed previously. This observation suggests that this interaction is not simply due to crystallographic packing but is enforced by elements of the myosin heads. The 10S reconstruction shows additional alpha-helical coiled-coil not seen in the earlier smHMM reconstruction, but the location of one segment of S2 is the same in both.  相似文献   

17.
The experimental conditions for release of the regulatory light chain (RLC) of scallop myosin at 30 degrees C were studied. Substantially all RLC was released from myosin by incubation for 5 min in medium containing buffer and KCl. This release of RLC was inhibited strongly by Ca2+, while the effect of Mg2+ was about 10,000 times weaker than that of Ca2+. Even in the absence of Ca2+, MgATP and MgADP inhibited the release of RLC, while the protective effect of AMPPNP was negligible. Other Mg nucleotides also showed some protective effect, though appreciably less than MgATP. The incubation of scallop myosin with abalone regulatory light chain (LC2) at 30 degrees C for 5 min produced a hybrid myosin. In the presence of 5 mM MgCl2, 1 of the 2 mol of RLC per mol of scallop myosin was exchanged with 1 mol of LC2. In the presence of Ca2+ or MgATP, myosin bound 1 extra mole of LC2 besides the 2 mol each of SH-LC and RLC.  相似文献   

18.
Identical tripeptides of the sequence X-Pro-Lys, where X is an unknown blocking group, were isolated from trypsin digests of bovine cardiac alkali light chain and the LC2 light chain of rabbit fast muscle. Chemical, electrophoretic and 1H-NMR evidence characterized X as an unusual amino acid, alpha-N-trimethylalanine (Me3Ala), which was earlier reported as the N-terminal amino acid of the A1 alkali light chain of rabbit fast muscle [Henry et al. (1982) FEBS Lett. 144, 11-15]. The narrow line width and chemical shift position (delta = 3.23 ppm) of the--N+-(CH3) protons of Me3Ala made 1H-NMR spectroscopy a convenient method to search for this residue in other light chains. A survey of many different light chains showed that this signal was present in all vertebrate striated muscle light chains of the A1-type (LC1, 'essential' light chains) and LC2-type ('DTNB'-light chains, 'phosphorylatable' light chains) but was absent from all invertebrate muscle and vertebrate smooth muscle light chains tested. It was also absent from the vertebrate fast-muscle-specific A2-type (LC3) light chains. The spectral characteristics of these signals were consistent with their having arisen from the protons of an--N+-(CH3)3 grouping. Since no epsilon-trimethyllysine could be detected in acid hydrolysates of these proteins, it appears that Me3Ala is a general feature as the N-terminal amino acid in these light chains. 1H-NMR studies on bovine cardiac myosin subfragment 1 (S1) showed that the Me3Ala methyl proton signal was clearly visible and that the spectrum more closely resembled that of a rabbit S1 isoenzyme, S1(A1), than S1(A2), suggesting that the 40-residue N-terminal segment of the alkali light chain in cardiac S1 also possesses a high segmental mobility. Addition of actin caused the same gross changes to the cardiac S1 spectrum as noted earlier for rabbit S1(A1) [Prince et al. (1981) Eur. J. Biochem. 121, 213-219]. In particular, a marked reduction in the segmental mobility of the N-terminal region of the alkali light chain was noted, consistent with a direct interaction of this area with actin.  相似文献   

19.
Molecular modeling of the myosin-S1(A1) isoform   总被引:2,自引:0,他引:2  
Type II myosin is the molecular motor which drives contraction upon cyclic interaction with filamentous actin while consuming ATP. The contemporary crystallographic structure of the myosin subfragment-1 (S1) of myosin covers both the motor domain of the heavy chain (MHC) as well as the essential (ELC) and regulatory light chains (RLC). A part of the N-terminus of the ELC is, however, missing in the 3D-models of Type II myosin. The N-terminal domain of the ELC comprises interesting functional features since it binds to actin thus controlling myosin motor activity. For the first time, we modeled the missing 46 N-terminal amino acid of the ELC to the contemporary actin-myosin-S1 complex. We show a rod-like 91 A structure being long enough to bridge the gap between the ELC core of myosin-S1 and the appropriate binding site of the ELC on the actin filament.  相似文献   

20.
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号