首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrastructural studies show that groups of tubular structures of about 45 nm. in diameter appear in the cytoplasm of grasshopper spermatids. These tubules, or macrotubules, appear to have a fuzzy coat or to be twisted, and in some cases their bundles attain a length of 10 um. When grasshoppers were treated with colchicine, spermatid microtubules which composed the manchette are depolymerized and a large number of macrotubules appears. The relationship between these two types of tubules is discussed.  相似文献   

2.
3.
Surfing on microtubule ends   总被引:19,自引:0,他引:19  
A crowd of proteins seems to have gathered around the plus-ends of microtubules. A rapidly expanding group of proteins known as plus-end tracking proteins (+TIPs) have been identified that seem to be able to 'surf' the dynamic ends of microtubules. Microtubule plus-ends exist in multiple conformational and chemical states. In principle, altering this plus-end microenvironment is an appealing way for regulators such as the +TIPS to control microtubule dynamics; however, specific mechanisms are poorly defined. Here, we focus on new findings addressing the underlying mechanisms of plus-end tracking and the mechanisms by which +TIPS control microtubule dynamics. We review the evidence that plus-end-binding and the control of microtubule dynamics are mechanistically linked. We also consider the possibility that, by studying +TIPs, we might learn more about the dynamic structural changes at the microtubule ends that are at the heart of dynamic instability.  相似文献   

4.
5.
6.
7.
微管成核的研究进展   总被引:2,自引:0,他引:2  
微管成核是指微管蛋白(tubulin)分子相互作用形成微管组织“核心”的过程,它是微管形成的初始阶段。在一定条件下,微管蛋白溶液中可以发生微管成核现象。γ微管蛋白(γ-tubulin)或多种γ微管蛋白复合体的存在能够加速这一过程。在体内,一般是由γ-TuRC(γ-tubulin ring complex)启动微管的装配。近年来研究发现即使没有γ微管蛋白,机体仍然能够利用某种机制组织微管成核。  相似文献   

8.
Effects of DNA on microtubule assembly   总被引:5,自引:0,他引:5  
  相似文献   

9.
Conflicting results on the effects of commensurability, overlap area, helicity and end configuration of double-walled carbon nanotubes (DWCNTs) on translational intertube friction have been reported. We perform molecular dynamics simulations on DWCNTs with different commensurabilities, overlap areas, helicities and end configurations to analyse the intertube friction behaviour and clarify these results. It is found that commensurability and overlap area play an insignificant role, while the atomic configurations of nanotube ends play a dominant role: armchair, normal and reconstructed zigzag ends contribute little to intertube friction; while the irregular ends with dangling atoms greatly increase the friction force. This end effect may also explain the role of helicity in the intertube friction. Implications of the end effect on experimental observations are also discussed.  相似文献   

10.
The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling. In metaphase spindles of human cells, the minus ends of MTs were located both around the centriole and in the body of the spindle. When augmin was knocked down, the latter population of MTs was significantly reduced. In control cells, we identified connections between the wall of one MT and the minus end of a neighboring MT. Interestingly, the connected MTs were nearly parallel, unlike other examples of end–wall connections between cytoskeletal polymers. Our observations support the concept of augmin-dependent MT nucleation at the walls of existing spindle MTs. Furthermore, they suggest a mechanism for maintaining polarized MT organization, even when noncentrosomal MT initiation is widespread.  相似文献   

11.
The effect of podophyllotoxin on microtubule dynamics   总被引:2,自引:0,他引:2  
We have investigated the effects of podophyllotoxin on the dynamic properties of microtubules assembled from pure tubulin dimer. Excess podophyllotoxin causes the complete disassembly of microtubules, through formation of a tubulin-GTP-podophyllotoxin ternary complex with a dissociation rate constant of 160 s-1 at 37 degrees C, similar to that found upon extensive isothermal dilution in this buffer system. Addition of substoichiometric concentrations of podophyllotoxin causes partial disassembly of microtubules through production of an equivalent amount of the ternary complex. Microtubule length measurements and incorporation of [3H]GTP-tubulin dimer show that podophyllotoxin can suppress the dynamic instability of tubulin dimer microtubules and that it acts substoichiometrically in so doing. We interpret the action of substoichiometric podophyllotoxin on microtubule ends in terms of effects on interconversion of growing and shrinking microtubules in a dynamic system in which tubulin-GTP-podophyllotoxin is kinetically analogous to tubulin-GTP in addition and to tubulin-GDP in dissociation. The ability to suppress dynamic instability may be one way in which drugs such as podophyllotoxin, acting at relatively low concentrations, are able to arrest cell growth and development in a selective way, without necessarily affecting the integrity of the major part of the cytoskeletal microtubule network.  相似文献   

12.
This minireview summarizes the syntheses of various purinenucleotide analogues and their effects on microtubule (Mt) assembly. 27 analogues were so far synthesized and, together with 3 analogues commercially available (ITP, XTP and dGTP), their effects on Microtubule assembly were investigated. The positions C2, C6, C8, and ribose moiety of purine nucleotides were modified or substituted. It was found that the microenvironments of the purine base and ribose moiety are important for the nucleotides to support Mt assembly. Introduction of amino group into position C2 of ATP, formation of 2-amino ATP, caused Mt assembly substantially. 2-Amino deoxy ATP and deoxy GTP are more potent than GTP in supporting assembly. The introduction of reactive thiol group into C6 (6-SH-GTP) largely reduces the activity of the analogue to support assembly. However, sequestering reactivity of the thiol group by association with methyl group largely recovers the ability of the analogue to promote assembly. Free rotation of the glycosidic linkage was found to be also innevitable in promoting assembly, as the introduction of sulfur atom between C8 of the purine base and C2' of the ribose moiety (formation of 8,2'-S-cyclo purine nucleotides) caused total inhibition. Purinenucleoside triphosphate supports assembly better than GTP but the deoxy-type analogues are totally inhibitory. 2-Amino-8-hydroxy ATP and other analogues support assembly much better than does GTP. However, their diphosphate analogues are totally incapable of supporting assembly. Introduction of a bulky fluorescent probes into C3' can be made to visualize the fluorescent signal in assembled Mts. Together with the suggestions proposed from electron chrystallography of zinc-induced tubulin sheets, interactions of the purine base and ribose moieties with surrounding amino acid residues are discussed.  相似文献   

13.
In 1974, optical diffraction and image analysis indicated that tubulin dimers in the cylindrically complete A-tubule of flagellar doublet microtubules are arranged with helical symmetry, while those in the incomplete B-tubule associate differently. Recently, electron micrographs of reassembled brain microtubules decorated with kinesin heads have shown that the tubulin dimers there are arranged as in the B-tubule. The lack of symmetry of microtubules assembled in vitro prompts Linda Amos to speculate here that the assembly process in vitro may differ from that occurring in the cell.  相似文献   

14.
Several microtubule-binding proteins including EB1, dynactin, APC, and CLIP-170 localize to the plus-ends of growing microtubules. Although these proteins can bind to microtubules independently, evidence for interactions among them has led to the hypothesis of a plus-end complex. Here we clarify the interaction between EB1 and dynactin and show that EB1 binds directly to the N-terminus of the p150(Glued) subunit. One function of a plus-end complex may be to regulate microtubule dynamics. Overexpression of either EB1 or p150(Glued) in cultured cells bundles microtubules, suggesting that each may enhance microtubule stability. The morphology of these bundles, however, differs dramatically, indicating that EB1 and dynactin may act in different ways. Disruption of the dynactin complex augments the bundling effect of EB1, suggesting that dynactin may regulate the effect of EB1 on microtubules. In vitro assays were performed to elucidate the effects of EB1 and p150(Glued) on microtubule polymerization, and they show that p150(Glued) has a potent microtubule nucleation effect, whereas EB1 has a potent elongation effect. Overall microtubule dynamics may result from a balance between the individual effects of plus-end proteins. Differences in the expression and regulation of plus-end proteins in different cell types may underlie previously noted differences in microtubule dynamics.  相似文献   

15.
Steady state and kinetic studies of polymerization of purified microtubule protein show little effect of glycerol on the steady state level of polymerization, as demonstrated by measurements of critical concentration. The rates of polymerization and depolymerization are slowed in the presence of glycerol. This data indicates that the stabilization of microtubules by high glycerol is largely a kinetic effect rather than a shift in equilibrium. However, the apparent critical concentration for microtubule polymerization from crude brain homogenate is substantially higher in the absence of glycerol, and glycerol appears to protect microtubule polymerization against the action of endogenous inhibitors.  相似文献   

16.
This paper introduces nucleation theory applied to crystallizing protein solutions. It is shown that the classical approach explains the available nucleation data under most conditions used for growing protein crystals for structural studies and for industrial crystallization. However, it fails to explain most experimental data on the structure of the critical clusters. It is also shown that for open systems working out of equilibrium, such as hanging-drop and counterdiffusion techniques, the geometry of the Ostwald-Myers protein solubility diagram and the number, size, and quality of the forming crystals depend not only on supersaturation but also on the rate of development of supersaturation.  相似文献   

17.
18.
19.
Heterotrimeric Gproteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. Gproteins also interact with microtubules and participate in microtubule-dependent centrosome/chromosome movement during cell division, as well as neuronal differentiation. In recent years, significant progress has been made in our understanding of the biochemical/functional interactions between Gprotein subunits (alpha and betagamma) and microtubules, and the molecular details emerging from these studies suggest that alpha and betagamma subunits of Gproteins interact with tubulin/microtubules to regulate the assembly/dynamics of microtubules, providing a novel mechanism for hormone- or neurotransmitter-induced rapid remodeling of cytoskeleton, regulation of the mitotic spindle for centrosome/chromosome movements in cell division, and neuronal differentiation in which structural plasticity mediated by microtubules is important for appropriate synaptic connections and signal transmission.  相似文献   

20.
Goodwin SS  Vale RD 《Cell》2010,143(2):263-274
Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号