首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of various metabolic inhibitors (uncouplers, cyanide, arsenate, ionophores) separately or together (for example, arsenate and an uncoupler) or even harsher methods of energy depletion did not prevent bacteriophage T5 from injecting its first-step-transfer DNA (a DNA segment 3 micron long) into the cytoplasm of host cells. The same indifference to metabolic energy was observed if first-step-transfer DNA was decapsidated and uncoiled before injection, thus precluding any energetic help from the phage capsid or from some tension stored in DNA tightly packed in the head. Penetration of the second-step-transfer DNA across the cytoplasmic membrane was studied by determining injection of superinfecting T5 A2- amber phages into Sup- bacteria containing proteins A1 and A2 previously encoded by the first-step-transfer DNA of a primary wild-type phage. The addition of various metabolic inhibitors after synthesis of proteins A1 and A2 but before superinfection did not prevent this penetration of second-step-transfer DNA. Thus, we conclude that traversal of the cytoplasmic membrane by the entire T5 DNA (a molecule 34 micron long) must occur by diffusion through protein channels.  相似文献   

2.
After infection of Escherichia coli B by bacteriophage T5, a major new protein species, as indicated by polyacrylamide gel electrophoresis, appears in the cells' membranes. Phage mutants with amber mutations in the first-step-transfer portion of their DNA have been tested for their ability to induce membrane protein synthesis after they infect E. coli B. We have found that phage with mutations in the Al gene of T5 do not induce the synthesis of the T5-specific major membrane protein, whereas phage that are mutant in the A2 gene do induce its synthesis. We conclude that gene Al must function normally for T5-specific membrane protein biosynthesis to occur and that only the first 8% (first-step-transfer piece) of the DNA need be present in the cell for synthesis to occur.  相似文献   

3.
Bacteriophage T5 absorption immediately followed by injection of the first-step-transfer DNA segment produces alterations in the bacterial membrane which reduce the uptake of amino acids and of o-nitrophenyl-beta-D-galactopyranoside. Concomitantly, intracellular ATP is hydrolyzed. The extent of inhibition of uptake and of ATP hydrolysis is cooperatively increased with the multiplicity of infection. Inhibition of active transport at a high multiplicity of infection (greater than 3) is also observed after the second step of DNA injection. In contrast, at low multiplicities of infection, phage proteins are able to enhance amino acid uptake. Infection of su- bacteria with amber mutants in the first-step-transfer DNA suggests that protein A1 is implicated in this enhancement.  相似文献   

4.
When T5 bacteriophage infect a colicin Ib-containing host, a variety of membrane changes and inhibition of macromolecular synthesis occur. This work shows that all these changes also occur when a mutant of T5 that can only inject 8% of its DNA is used. This indicates that all the information necessary for the abortive infection is present on this 8% (first-step-transfer) DNA.  相似文献   

5.
Injection of T5 first-step-transfer DNA was prevented at 29 degrees C, after adsorption to an unsaturated fatty acid mutant grown on elaidate (phase transition at 35 degrees C). Local anesthetics, which increase membrane fluidity, did not inhibit injection above transition temperature and could even reverse the inhibition observed at 29 degrees C on elaidate cells.  相似文献   

6.
An expanded genetic map of bacteriophage T5 has been constructed by using a set of amber, rather than temperature-sensitive, mutants that represent 29 cistrons. The map consists of three small groups and one large group of genes; mutants defective in genes that are located in different groups exhibit maximal recombination when crossed with one another. However, it has been possible to establish tentative linkage among these groups by use of a particular mutant that appears to affect recombination. One of the small groups of genes is located in the first-step-transfer or FST segment; the other two small groups represent newly discovered genetic regions. The large group probably includes most or all of the previously published maps of T5. The apparent genetic discontinuities are discussed in relation to certain anatomical and physiological features that are unique to bacteriophage T5.  相似文献   

7.
Examination of the first-step-transfer DNA of T5ris mutants which carry new EcoRI sites showed that the left end of the chromosome is injected first.  相似文献   

8.
T5 st0 phages irreversibly blocked in the injection of their second-step-transfer DNA can produce active A1 and A2 proteins which complement first-step-transfer amber mutants infecting an su strain.  相似文献   

9.
An examination was made of the properties of T5HA4, a mutant of bacteriophage T5 that lacks the single-chain interruption that occurs at 7.9% from the left end of the genome. The DNAs of T5HA4 and the wild type were compared by electrophoresis in agarose gels of both single-stranded fragments produced by denaturation and duplex fragments generated by sequential treatment with exonuclease III and SI nuclease. These studies demonstrated that T5HA4 also lacks an interruption that occurs at 99.6% in wild-type DNA. The interruptions at 7.9 and 99.6% therefore occur within the 8.3% of T5 DNA that is terminally repetitious. Evidence on the location of other interruptions within the terminal repetition was also obtained. Analysis of T5HA4 with a restriction endonuclease indicated that the interruption deficiency is not due to a deletion or addition mutation. The injection of T5HA4 DNA into a host bacterium was found to occur, as with the wild type, in a two-step manner. The interruption at 7.9% is therefore not required for stopping DNA transfer after the initial 8% segment has been injected.  相似文献   

10.
A bacteriophage T5 mutant has been isolated that is completely deficient in the induction of deoxynucleoside 5'-monophosphatase activity during infection of Escherichia coli F. The mutant bacteriophage has been shown to be deficient in the excretion of the final products of DNA degradation during infection of E. coli F, and about 30% of the host DNA's thymine residues were reinocorporated into phage DNA. During infection with this mutant, host DNA degradation to trichloroacetic acid-soluble products was normal, host DNA synthesis was shut off normally, and second-step transfer was not delayed. However, induction of early phage enzymes and production of DNA and phage were delayed by 5 to 15 min but eventually reached normal levels. The mutant's phenotype strongly suggests that the enzyme's role is to act at the final stage in the T5-induced system of host DNA degradation by hydrolyzing deoxynucleoside 5'-monophosphates to deoxynucleosides and free phosphate; failure to do this may delay expression of the second-step-transfer DNA.  相似文献   

11.
The fluorescence intensity of membrane-bound N-phenyl-1-naphthylamine increases dramatically when T5 bacteriophage infect colicin Ib plasmid-containing hosts. This dramatic increase is not seen during normal infections or in infections wherein either the plasmid or the phage contain mutations which allow productive infection to occur. Two smaller increases in fluorescence intensity are seen, however, in all T5 infections in which the characteristic two-step injection of DNA can proceed.  相似文献   

12.
DNA injection by alkylated and nonalkylated bacteriophage T7 has been analyzed by a physical method which involved Southern hybridization to identify noninjected regions of DNA. Treatment of phage with methyl methanesulfonate reduced the amount of DNA injected into wild-type Escherichia coli cells. This reduction was correlated with a decreased injection of DNA segments located on the right-hand third of the T7 genome. An essentially identical injection defect was observed when alkylated phage infected E. coli mutant cells unable to repair 3-methyladenine. Furthermore, untreated phage particles were discovered to be naturally injection-defective. Some injected all their DNA except those segments located in the rightmost 15% of the T7 genome, while other injected no DNA at all. In the presence of rifampicin, untreated phages injected only segments from the left end of the genome. These results provide direct physical evidence that T7 DNA injection is strictly unidirectional, starting from the left end of the T7 genome. The injection defect quantified here for alkylated phage is probably partially, if not totally, responsible for phage inactivation, when that inactivation is measured in wild-type E. coli cells. Since alkylated phage injected the same DNA sequences into both wild-type and repair-deficient cells, we conclude that DNA injection is independent of the host-cell's capacity for repair of 3-methyladenine residues.  相似文献   

13.
Marker rescue experiments with alkylated T7 bacteriophage carried out in the presence and in the absence of nalidixic acid suggest that the gradient in rescue is due to two alkylation-induced causes: a DNA injection defect and an interference with DNA synthesis.  相似文献   

14.
DNA polymerase of bacteriophage T7 is composed of two subunits, the gene 5 protein of the phage and the host-specified thioredoxin. The gene 5 protein has been purified 7400-fold to homogeneity from bacteriophage T7-infected Escherichia coli 7400 trxA cells that lack thioredoxin. The purification procedure has been monitored by using a complementation assay in which thioredoxin interacts with the gene 5 protein to form an active DNA polymerase. The purified gene 5 protein is a single polypeptide having a molecular weight of 87,000. The gene 5 protein itself has only 1 to 2% of the polymerase activity of T7 DNA polymerase. However, T7 DNA polymerase can be reconstituted by the addition of homogeneous thioredoxin to the gene 5 protein. Optimal reconstitution is obtained when the molar ratio of thioredoxin/gene 5 protein is 150. Under these conditions, the gene 5 protein attains approximately 80% of the activity of an equal amount of T7 DNA polymerase. The apparent Km for thioredoxin in the reaction to restore DNA polymerase activity is 2.8 x 10(-8) M. The enzymatic properties of the reconstituted enzyme are indistinguishable from those of T7 DNA polymerase synthesized in vivo; the reconstituted polymerase interacts with T7 gene 4 protein to catalyze DNA synthesis on duplex DNA templates.  相似文献   

15.
Bacteriophage T5 is not confined by the restriction systems of the second type EcoRII and EcoRV. Bacteriophage T5 DNA is not modified by EcoRII and EcoRV methylases in vivo. The sites of recognition for restriction endonuclease EcoRV are mapped at 24.4; 57.6; 68.5; 70.2% of T5 DNA, while the sites at 5.1; 7.6% are recognized by EcoRII, the sites at 5.75; 6.0 and 6.5% are recognized by HpaI in FST. A high activity of restriction endonucleases EcoRI and EcoRV is demonstrated in crude extracts of E. coli B834 (RI) and E. coli B834 (RV) cells infected by bacteriophage T5. The simultaneous infection of E. coli B834 (RI) or E. coli B834 (RV) cells by the amber mutants of bacteriophage T5 and the suppressing phage lambda NM761 does not result in the protection of lambda DNA by the T5 anti-restriction mechanism. The presented data support the hypothesis that the anti-restriction mechanism of bacteriophage T5 is based on prevention of T5 DNA contacts with restriction enzymes by a specific phage protein.  相似文献   

16.
The gene D5 product (gpD5) of bacteriophage T5 is a DNA-binding protein that binds preferentially to double-stranded DNA and is essential for T5 DNA replication, yet it inhibits DNA synthesis in vitro. Mechanisms of inhibition were studied by using nicked DNA and primed single-stranded DNA as a primer-template. Inhibition of T5 DNA polymerase activity by gpD5 occurred when double-stranded regions of DNA were saturated with gpD5. The 3' leads to 5' exonuclease associated with T5 DNA polymerase was not very active with nicked DNA, but inhibition of hydrolysis of substituents at 3'-hydroxyl termini by gpD5 could be observed. T5 DNA polymerase appears to be capable of binding to the 3' termini even when double-stranded regions are saturated with gpD5. The interaction of gpD5 with the polymerases at the primer terminus is apparently the primary cause of inhibition of polymerization.  相似文献   

17.
A simple and rapid method is described for separation of T-even bacteriophage deoxyribonucleic acid (DNA) from host (Escherichia coli) DNA by hydroxyapatite column chromatography with a shallow gradient of phosphate buffer at neutral pH. By this method, bacteriophage T2, T4, and T6 DNA (but not T5, T7, or lambda DNA) could be separated from host E. coli DNA. It was found that glucosylation of the T-even phage DNA is an important factor in separation.  相似文献   

18.
Neither bacteriophage T5+ nor its EcoRI-sensitive ris mutants became modified during growth on an EcoRI-modifying host. For this reason, the rare ris plaques able to grow on the EcoRI-modifying host were always due to revertant phage rather than to modified ris mutants. The ris mutations resulted in the creation of new EcoRI cleavage sites in the terminally repetitious first-step transfer DNA, and analysis of T5 ris revertants showed loss of these sites and restoration of the wild-type restriction pattern. Natural EcoRI sites present in the second-step transfer DNA were never lost in T5ris revertants, indicating that these are irrelevant to in vivo restriction and are protected during growth on the restricting host.  相似文献   

19.
cosN is the site at which the bacteriophage lambda DNA packaging enzyme, terminase, introduces staggered nicks to generate the cohesive ends of mature lambda chromosomes. Genetic and molecular studies show that cosN is recognized specifically by terminase and that effects of cosN mutations on lambda DNA packaging and cosN cleavage are well correlated. Mutations affecting a particular base-pair of cosN are unusual in being lethal in spite of causing only a moderate defect in cosN cleavage and DNA packaging. The particular base-pair is the rightmost duplex base-pair in mature chromosomes, at position 48,502 in the numbering system of Daniels et al; herein called position - 1. A G.C to T.A transversion mutation at position - 1, called cosN - 1T, reduces the particle yield of lambda fivefold, and the particles formed are not infectious. lambda cosN - 1T particles have wild-type morphology, and contain chromosomes that have normal cohesive ends. The chromosomes of lambda cosN - 1T particles, like the chromosomes of lambda + particles, are associated with the tail. lambda cosN - 1T particles, in spite of being normal structurally, are defective in injection of DNA into a host cell. Only approximately 25% of lambda cosN - 1T particles are able to eject DNA from the capsid in contrast to 100% for lambda +. Furthermore, for the 25% that do eject, there is a further injection defect because the ejected lambda cosN - 1T chromosomes fail to cyclize, in contrast to the efficient cyclization found for wild-type chromosomes following injection. The cosN - 1T mutation has no effect on Ca2+ mediated transformation by lambda DNA, indicating that the effect of the mutation on DNA fate is specific to the process of DNA injection. Models in which specific DNA : protein interactions necessary for DNA injection, and involving the rightmost base-pair of the lambda chromosome, are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号