首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using synthetic oligonucleotides deduced from the N-terminal amino acid sequence of purified mitoribosomal protein (mt r-protein) YmL27, the corresponding nuclear gene MRP-L27 of the yeast Saccharomyces cerevisiae has been cloned and sequenced. The MRP-L27 gene codes for 146 amino acids and is located on chromosome X. The mature YmL27 protein consists of 130 amino acids - after cleaving the putative mitochondrial signal peptide - with a net charge of +17 and a calculated relative molecular mass of 14,798 Da. The YmL27 protein as well as the yeast mitoribosomal protein YmL31, which had been characterized and its gene (MRP-L31) cloned previously, is essential for mitochondrial function as shown by the inability of gene disrupted mutants for the MRP-L27 or MRP-L31 genes to grow on non-fermentable carbon sources.  相似文献   

3.
The nuclear gene for mitochondrial ribosomal protein YmL9 (MRP-L9) of yeast has been cloned and sequenced. The deduced amino acid sequence characterizes YmL9 as a basic (net charge + 30) protein of 27.5 kDa with a putative signal peptide for mitochondrial import of 19 amino acid residues. The intact MRP-L9 gene is essential for mitochondrial function and is located on chromosome XV or VII. YmL9 shows significant sequence similarities to Escherichia coli ribosomal protein L3 and related proteins from various organisms of all three natural kingdoms as well as photosynthetic organelles (cyanelles). The observed structural conservation is located mostly in the C-terminal half and is independent of the intracellular location of the corresponding genes [Graack, H.-R., Grohmann, L. & Kitakawa, M. (1990) Biol. Chem. Hoppe Seyler 371, 787-788]. YmL9 shows the highest degree of sequence similarity to its eubacterial and cyanelle homologues and is less related to the archaebacterial or eukaryotic cytoplasmic ribosomal proteins. Due to their high sequence similarity to the YmL9 protein two mammalian cytoplasmic ribosomal proteins [MRL3 human and rat; Ou, J.-H., Yen, T. S. B., Wang, Y.-F., Kam, W. K. & Rutter, W. J. (1987) Nucleic Acids Res. 15, 8919-8934] are postulated to be true nucleus-encoded mitochondrial ribosomal proteins.  相似文献   

4.
We have determined the N-termini of 26 proteins of the large ribosomal subunit from yeast mitochondria by direct amino acid micro-sequencing. The N-terminal sequences of proteins YmL33 and YmL38 showed a significant similarity to eubacterial ribosomal (r-) proteins L30 and L14, respectively. In addition, several proteins could be assigned to their corresponding yeast nuclear genes. Based on a comparison of the protein sequences deduced from the corresponding DNA regions with the N-termini of the mature proteins, the putative leader peptides responsible for mitochondrial matrix-targeting were compiled. In most leader sequences a relative abundance of aromatic amino acids, preferentially phenylalanine, was found.  相似文献   

5.
In cattle, 7 of the 30 or more subunits of the respiratory enzyme NADH:ubiquinone reductase (complex I) are encoded in mitochondrial DNA, and potential genes (open reading frames, orfs) for related proteins are found in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum. Homologues of the nuclear-coded 49- and 23-kDa subunits are also coded in chloroplast DNA, and these orfs are clustered with four of the homologues of the mammalian mitochondrial genes. These findings have been taken to indicate that chloroplasts contain a relative of complex I. The present work provides further support. The 30-kDa subunit of the bovine enzyme is a component of the iron-sulfur protein fraction. Partial protein sequences have been determined, and synthetic oligonucleotide mixtures based on them have been employed as hybridization probes to identify cognate cDNA clones from a bovine library. Their sequences encode the mitochondrial import precursor of the 30-kDa subunit. The mature protein of 228 amino acids contains a segment of 57 amino acids which is closely related to parts of proteins encoded in orfs 169 and 158 in the chloroplast genomes of M. polymorpha and N. tabacum. Moreover, the chloroplast orfs are found near homologues of the mammalian mitochondrial genes for subunit ND3. Therefore, the plant chloroplast genomes have at least two separate clusters of potential genes encoding homologues of subunits of mitochondrial complex I. The bovine 30-kDa subunit has no extensive sequences of hydrophobic amino acids that could be folded into membrane-spanning alpha-helices, and although it contains two cysteine residues, there is no clear evidence in the sequence that it is an iron-sulfur protein.  相似文献   

6.
The mitochondrial NADH-ubiquinone reductase (complex I) is an assembly of approximately 26 different polypeptides. In vertebrates and invertebrates, seven of its subunits are the products of genes in the mitochondrial DNA, and homologues of these genes have been found previously in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum, although their function in the chloroplast is unknown. The remainder of the subunits of the mitochondrial complex are nuclear gene products that are imported into the organelle, amongst them the 49 kd subunit, a component of the iron--sulphur subcomplex of the enzyme. In the present work, the N-terminal sequence of this protein has been determined, and this has been used to design two mixtures of synthetic oligonucleotides, each containing 32 different sequences 17 bases long. These mixtures have been used as hybridization probes to isolate cDNA clones from a bovine library. The DNA sequences of these clones have been determined and they encode the mature 49 kd protein, with the exception of amino acids 1 and 2. The protein sequence of 430 amino acids is closely related to those of proteins that are encoded in open reading frames (ORFs) present in the chloroplast genomes of M.polymorpha and N.tabacum. Only one cysteine is conserved and the sequences provide no indication that the 49 kd protein contains iron--sulphur centres. These ORFs are found in the single copy regions of chloroplast DNA in close proximity to four of the homologues of the mammalian mitochondrial genes that encode subunits of complex I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two different bovine cDNAs have been characterized that encode closely related homologues of the mitochondrial membrane carrier protein ADP/ATP translocase. One of them codes for the protein that has been characterized previously from bovine heart mitochondria, and the other codes for a protein that differs from it in 33 amino acids out of 297. Including the base substitutions required to bring about these changes in amino acid sequence, the coding regions of the cDNAs differ at 184 positions. In addition, they are extensively diverged in their 3' noncoding sequences, which differ greatly in both length and sequence, and these segments of the cDNAs have been used as hybridization probes to demonstrate that the expression of the two genes giving rise to the two proteins is very different in various bovine tissues. Expression of one gene predominates in heart muscle and that of the other in intestine. Hybridization experiments with digests of genomic DNA have shown the presence of numerous sequences related to the two cDNAs in both the bovine and human genomes. Some of these probably arise from pseudogenes, but three expressed genes have been detected in the human genome. The study of the regulation of the expression of these genes may help to illuminate the basis of tissue-specific human mitochondrial diseases which arise because of defects in mitochondrial enzymes only in the affected tissue and not in other tissues of the same individual.  相似文献   

8.
Four different classes of mammalian mitochondrial ribosomal proteins were identified and characterized. Mature proteins were purified from bovine liver and subjected to N-terminal or matrix-assisted laser-desorption mass spectroscopic amino acid sequencing after tryptic in-gel digestion and high pressure liquid chromatography separation of the resulting peptides. Peptide sequences obtained were used to virtually screen expressed sequence tag data bases from human, mouse, and rat. Consensus cDNAs were assembled in silico from various expressed sequence tag sequences identified. Deduced mammalian protein sequences were characterized and compared with ribosomal protein sequences of Escherichia coli and yeast mitochondria. Significant sequence similarities to ribosomal proteins of other sources were detected for three out of four different mammalian protein classes determined. However, the sequence conservation between mitochondrial ribosomal proteins of mammalian and yeast origin is much less than the sequence conservation between cytoplasmic ribosomal proteins of the same species. In particular, this is shown for the mammalian counterparts of the E. coli EcoL2 ribosomal protein (MRP-L14), that do not conserve the specific and functional highly important His(229) residue of E. coli and the corresponding yeast mitochondrial Rml2p.  相似文献   

9.
As a first step towards using cross-species comparison to complete the inventory of the nuclear genes that encode mitochondrial polypeptides, and ultimately to understand their function through systematic molecular and genetic analysis in a model organism of choice, we report here the characterization of 41 Drosophila melanogaster cDNAs. These cDNAs were isolated by screening an ovarian expression library with antibodies against mitochondrial proteins and identify 17 novel Drosophila genes. The deduced amino acid sequences encoded by the majority of these cDNAs turned out to show significant homology to mitochondrial proteins previously identified in other species. Among others, ORFs putatively encoding six different subunits of ATP synthase and three NADH:ubiquinone reductase subunits were detected. By in situ hybridization, all cDNAs were mapped to single bands on polytene chromosomes, thus identifying candidate Drosophila genes required for mitochondrial biogenesis and maintenance. A search of the Human Gene Index database made it possible in most cases to align the entire Drosophila coding sequence with a human consensus sequence, suggesting that the cDNAs originate from insect counterparts of expressed mammalian genes. Our experimental strategy represents an efficient approach to the identification and interspecies comparison of genes encoding products targeted to the mitochondrion. Received: 13 July 1998 / Accepted: 12 October 1998  相似文献   

10.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

11.
12.
13.
Human cDNA probes encoding the C3b/C4b complement receptor, CR1, have been used to identify, in the mouse, two new genes which are related to CR1 but which appear to encode a different protein product. These new mouse genes, arbitrarily designated mouse genes X and Y, hybridize specifically to three different cDNA probes derived from human CR1. The degree of hybridization homology between the mouse X and Y genes suggests they are very closely related to one another; however, the chromosomal localization of the mouse X gene to chromosome 8 and the mouse Y gene to chromosome 1 indicates they are distinct gene sequences. The mRNA species detected with the X and/or Y (X/Y) sequences are approximately 2000 bases in length, but vary in both quantity and size depending upon the tissue analyzed. DNA sequence analysis of a cDNA specific for the X and Y sequences indicates the mature protein(s) will contain the 60 amino acid consensus repeat characteristic of a group of other proteins including CR1, the C3d receptor (CR2), H, C4 binding protein (C4bp), the interleukin 2 (Il 2) receptor and others. The identity of the mouse X and Y genes, and the function of the proteins which they encode, is not known; however, the small size of the mRNA and the tissue specific expression suggests they do not encode mouse CR1 or CR2 but instead encode a related protein (or proteins) which is expressed in a wide variety of mouse tissues.  相似文献   

14.
Two v-erbA-related genes, named ear-2 and ear-3, have been identified in the human genome and characterized by cDNA cloning. These genes are predicted to encode proteins that are very similar in primary structure to receptors for steroid hormones or thyroid hormone (T3). In addition, amino acid sequences of the ear-2 and ear-3 gene products are very similar each other especially at the DNA binding domain (86% homology) and at the putative ligand binding domain (76% homology). Northern hybridization with ear DNA probes of RNAs from various tissues of a human fetus reveals that the expression of ear-2 is high in the liver whereas the expression of ear-3 is relatively ubiquitous. Hybridization analysis of DNAs from sorted chromosomes shows that the ear-2 gene is located on chromosome 19 and ear-3 on chromosome 5, indicating that the two genes are clearly different from each other.  相似文献   

15.
Microtubules and microfilaments are highly conserved cytoskeletal polymers hypothesized to play essential biomechanical roles in the unusual gliding motility of Apicomplexan zoites and in their invasion of, and development within, host epithelial cells. We have identified and isolated Cryptosporidium parvum genes encoding the microtubule proteins alpha- and beta-tubulin and the microfilament protein actin by screening a lambda gt11 C. parvum genomic DNA library with degenerate oligonucleotide and heterologous cDNA hybridization probes respectively. The alpha- and beta-tubulin genes have been partially sequenced and the deduced peptide sequences show greatest homology with the tubulins of the related parasites, T. gondii and P. falciparum. The complete nucleic acid sequence of the actin gene predicts a 376 amino acid, 42 kDa protein having 85% sequence identity with the P. falciparum actin I and the human gamma-actin proteins. Each of these cytoskeletal protein genes was demonstrated to be of cryptosporidial origin by Southern analyses of C. parvum chromosomes fractionated by pulsed field gel electrophoresis; the cloned alpha- and beta-tubulin genes hybridized with chromosomes of ca. 1,200 and 1,500 kb respectively and the cloned actin gene also hybridized with a 1,200 kb chromosome.  相似文献   

16.
17.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

18.
The lytic activity induced by the lactococcal bacteriophage P001 was isolated from phage lysates of Lactococcus lactis by a four-step purification procedure. Two proteins lytic for L. lactis were identified with molecular weights of 28 kDA and 8 kDa, respectively. The N-terminal amino acid sequences of the two proteins were determined and degenerated oligonucleotide probes corresponding to these sequences were synthesized. DNA hybridization experiments with phage P001-DNA and lactococcal DNA revealed that both proteins were apparently encoded by a single lysin gene located on the phage P001 genome. This was confirmed by alignment of the determined N-terminal amino acid sequences with nucleotide sequences which were deduced from cloned Lactococcus bacteriophage lysin genes.  相似文献   

19.
The 24-kDa subunit of mitochondrial NADH-ubiquinone reductase (complex I) is an iron-sulfur protein that is present in the flavoprotein or NADH dehydrogenase II subcomplex. It is a nuclear gene product and is imported into the organelle. A group of human patients with mitochondrial myopathy have been shown to have reduced levels of subunits of complex I in skeletal muscle mitochondria, and in one patient the 24-kDa subunit appears to be absent (Schapira et al., 1988). To investigate the genetic basis of this type of myopathy, cDNA clones have been isolated from a bovine library derived from heart and liver mRNA by hybridization with two mixtures of 48 synthetic oligonucleotides 17 bases in length that were designed on the basis of known protein sequences. The recombinant DNA sequence has been determined, and it encodes a precursor of the mature 24-kDa protein. The N terminus of the mature protein is preceded by a presequence of 32 amino acids that has properties that are characteristic of mitochondrial import sequences. The sequence of the mature protein deduced from the cDNA contains a segment of nine amino acids that was not determined in an earlier partial protein sequence analysis. The bovine clone has been employed as a hybridization probe to identify cDNA clones of the human homologue of the 24-kDa protein. Its DNA sequence has also been determined, and it codes for a protein that is closely related to the bovine protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the ‘protein intron’ is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号