首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Subcellular fractionation techniques have been used to assess the localization of injected 125I-labeled cholera toxin (125I-CT) taken up by rat liver in vivo, and to determine whether internalization of the toxin is required for the generation of the active A1 peptide. The uptake of injected 125I-CT into the liver is maximal at 5 min (about 10% injected dose/g). At this time the radioactivity is for the most part recovered in the microsomal (P) fraction, but later on it progressively associates with the mitochondrial-lysosomal (ML) and supernatant fractions. The radioactivity is enriched 7-fold in plasma membranes at 5-15 min, and 15-60-fold in Golgi-endosome (GE) fractions at 15-60 min. On analytical sucrose gradients the radioactivity associated with the P fraction is progressively displaced from the region of 5'-nucleotidase (a plasma membrane marker) to that of galactosyltransferase (a Golgi marker). On Percoll gradients, however, it is displaced towards acid phosphatase (a lysosomal marker). Density-shift experiments, using Triton WR 1339, suggest that some radioactivity associated with the P fraction (at 30 min) and all the radioactivity present in the ML fraction (at 2 h) is intrinsic to acid-phosphatase-containing structures, presumably lysosomes. Comparable experiments using 3,3'-diaminobenzidine cytochemistry indicate that the radioactivity present in GE fractions is separable from galactosyltransferase, and thus is presumably associated with endosomes. The fate of injected 125I-labeled cholera toxin B subunit differs from that of the whole toxin by a more rapid uptake (and/or clearance) of the ligand into subcellular fractions, and a greater accumulation of ligand in the ML fraction. Analysis of GE fractions by SDS/polyacrylamide gel electrophoresis shows that, up to 10 min after injection of 125I-CT, about 80% of the radioactivity is recovered as A subunit and 20% as B subunit, similarly to control toxin. Later on there is a time-dependent decrease in the amount of A subunit and, at least with the intermediate GE fraction, a concomitant appearance of A1 peptide (about 15% of the total at 60 min). In contrast the radioactivity associated with plasma membranes remains indistinguishable from unused toxin. It is concluded that, upon interaction with hepatocytes, 125I-CT (both subunits A and B) sequentially associates with plasma membranes, endosomes and lysosomes, and that endosomes may represent the major subcellular site at which the A1 peptide is generated.  相似文献   

2.
Colloidal iron dextran particles bearing wheat germ agglutinin (WGA/FeDex) were bound by glycoconjugates expressed at the surface of HepG2 cells. Bound WGA/FeDex was internalized when cells were incubated at 37 degrees C and accumulated in intracellular structures which have the same buoyant density as the plasma membrane when examined on Percoll density gradients. The intracellular structures containing WGA/FeDex were identified as multivesicular bodies (MVB) by transmission electron microscopy. WGA/FeDex was not transported to lysosomes nor did it interfere with uptake and transport of GalBSA to lysosomes by the asialoglycoprotein receptor. WGA/FeDex was seen predominantly in non-coated invaginations at the cell surface, suggesting it may enter cells at a different site than GalBSA/FeDex. Highly enriched plasma membranes and MVBs containing superparamagnetic [125I]WGA/FeDex particles were prepared by high gradient magnetic affinity chromatography (HIMAC). Plasma membranes prepared by HIMAC were enriched 30-fold for [125I]WGA/FeDex, 15-fold for alkaline phosphodiesterase I, and 9-fold for galactosyltransferase relative to the crude post-nuclear homogenate and consisted entirely of plasmalemmal sheets. Intracellular structures containing WGA/FeDex were enriched 35-fold for [125I]WGA/FeDex, 10-fold for alkaline phosphodiesterase I, and 10-fold for galactosyltransferase but did not contain lysosomal beta-galactosidase. WGA/FeDex has a different ultimate destination in HepG2 cells than ligands internalized by the asialoglycoprotein receptor and can be used to obtain highly enriched plasma membranes and MVBs from cultured cells.  相似文献   

3.
Rabbit liver plasma membranes were isolated and purified by using an aqueous two-phase polymer system. Examination of these preparations with respect to electron-microscopical appearance, distribution of marker enzymes and gross biochemical composition revealed them to be free from contamination by intracellular components. Sera from ten patients with chronic active hepatitis, four with and six without hepatitis B viral markers (HBsAg) in their sera, produced a single precipitin line on immunodiffusion against a detergent extract of the isolated plasma membranes. Sera from HBsAg-positive and HBsAg-negative patients reacted against the same antigen. This antigen was enriched in the plasma membrane preparations compared with whole-liver homogenates and was identical with a species-non-specific antigen in a macromolecular fraction of normal human liver, which has been previously described as liver-specific lipoprotein.  相似文献   

4.
Plasma membranes from heart (sarcolemma) were prepared by the method of Kidwai, A.M. (1975) Methods in Enzymology (Fleischer, S. and Packer, L., eds.), Vol XXXIA, pp. 134--144, Academic Press, New York). On many occasions the sarcolemmal fraction identified by the enzyme markers such as (Na+ + K+)-ATPase banded at heavier densities (d greater than 1.25 g/ml) than expected for plasma membrane (d less than 1.15 g/ml). Radio-iodination of the membrane was added as an independent marker and conditions for the reproducible preparation of the sarcolemma were studied. Cultured heart cells were enzymatically iodinated under conditions which did not affect viability and labeled primarily the sarcolemma. The distribution of radioactivity in homogenates of cultured cells on the density gradient corresponded to that of the enzymes' activity. The best sarcolemma preparation was obtained with 0.3 M KCl extraction of heart homogenates in the presence of 0.05 M pyrophosphate, especially if the salt was also present during the fractionation by density gradient centrifugation. Alterations in the density were also observed with erythrocytes and cultured liver cells' plasma membrane. The data suggests a meta-stable state of the plasma membranes due to handling or storage which could cause alterations of some of their physical properties (e.g. density).  相似文献   

5.
Procedures to isolate plasma membrane, Golgi apparatus, and endoplasmic reticulum from a single homogenate of mouse liver are described. Fractions contain low levels of contaminating membranes as determined from morphometry and analyses of marker enzymes. The method requires only 2–3 gm of liver as starting material and yields approximately 0.7, 0.7, and 0.5 mg protein/gm liver, respectively, for endoplasmic reticulum, Golgi apparatus, and plasma membrane. Golgi apparatus fractions show high levels of galactosyltransferase activity and consist of cisternal stacks and associated secretory vesicles and tubules. Endoplasmic reticulum fractions are enriched in both glucose-6-phosphatase and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-cytochrome c reductase and contain membrane vesicles with attached ribosomes. K+-stimulated p-nitrophenyl phosphatase and (Na+ K+) adenosine triphosphatase activity are enriched in the plasma membrane fraction. This fraction consists of membrane sheets, many with junctional complexes, and bile canaliculi that are representative of the total hepatocyte plasma membrane. The fractionation procedure is designed to utilize small amounts of tissue (e.g., with liver slices), to reduce the total time required for fractionation, and to permit comparisons of constituents of plasma membrane, Golgi apparatus, and endoplasmic reticulum prepared from the same starting homogenates.  相似文献   

6.
Plasma membranes were isolated from rat liver homogenates either by differential centrifugation or by fractionation in discontinuous sucrose density gradients. Both membrane preparations contained about 17% of the total uridine phosphorylase (EC 2.4.2.3) activity and 44% of the total 5'-nucleotidase (EC 3.1.3.5). The enrichment factor for uridine phosphorylase in the fractions prepared by differential centrifugation was about 2.8 and by the gradient method, as much as 11.0; the respective enrichment factors for 5'-nucleotidase were 1.8 and 9.5. Uridine phosphorylase activity of isolated plasma membrane fractions was stimulated 2.5-fold by 0.1% Triton X-100. Unlike the cytosol enzyme, uridine phosphorylase of plasma membranes showed little or no deoxyuridine-cleaving activity. Contamination of the membrane fractions by thymidine phosphorylase (EC 2.4.2.4) of the cytosol was negligible. The other subcellular organelles obtained by either procedure and characterized by marker enzyme activities were found not to contain significant uridine phosphorylase activity; the cytosol fractions contained just over 70% of the total uridine phosphorylase activity with an enrichment of only about 2.8-fold. The activity of the cytosol enzyme was not stimulated by Triton X-100.  相似文献   

7.
Lactoperoxidase-catalysed iodination was used to label intestinal epithelial cell sheets with 125I. The iodination was carried out under conditions that allowed little penetration of lactoperoxidase into the cells and membrane-bound 125I therefore provided an effective marker for following plasma-membrane fragments through subcellular-fractionation procedures. 2. After homogenization and isopycnic zonal centrifugation through sucrose gradients two peaks of membrane-bound 125I were detected. One coincided with brush border enzymes such as alkaline phosphatase, disaccharidases and L-leucine B-naphthylamidase, whereas the other was coincident with the major peak of (Na++K+)-stimulated ATPase (adenosine triphosphatase), which has been thought to be concentrated in the basolateral plasma membranes of these cells. Neither peak of 125I reflected the distribution of any marker for an intracellular organelle. 3. A larger proportion of the (Na++K+)-stimulated ATPase, and thus of the basolateral plasma-membrane material, was found in a crude 'mitochondrial' fraction. It was not readiily separated from mitochondria by conventional techniques of subcellular fractionation. 4. Treatment of the 'mitochondrial' fraction with digitonin increased the density of basolateral plasma membrane but had little effect on mitochondrial density. A purified preparation of digitonin-loaded basolateral plasma membranes was isolated at a density of 1.20-1.22 by isopycnic centrifugation. 5. The enzymic composition of this preparation of basolateral plasma membranes is compared with previous preparations isolated from intestinal mucosal 'scrape' materials and from isolated cells.  相似文献   

8.
Plasma membranes can be isolated from a variety of plant tissues by first preparing a post-mitochondrial membrane fraction enriched in plasma membranes, by differential centrifugation, and partitioning this on a dextran-polyethylene glycol two-phase system. With wild oat aleurone, however, we observed that differential centrifugation could not be used to produce a microsomal fraction enriched in plasma membrane. Approximately 70% of the plasma membrane in aleurone homogenates was pelleted by sequential centrifugation at 100 g× 10 min and 1000 g× 10 min. The remainder sedimented at 112 000 g× 1 h. All the material that was pelletable by centrifugation was, therefore, subjected to dextran-polyethylene glycol two-phase partitioning. The plasma membrane marker enzymes glucan synthase II (GSII, EC 2. 4. 1. 34) and UDP-glucose:sterol glucosyltransferase (SGT, EC 2. 4. 1.) were enriched in the upper phase, whereas cytochrome c oxidase activity (EC 1. 9. 3. 1), a mitochondrial marker enzyme, was depleted. The presence of endoplasmic reticulum (ER) and protein body membranes in the phase system was assessed by probing western blots, of SDS-PAGE separated proteins, with polyclonal antiserum either to binding protein (BiP, an ER marker) or to tonoplast intrinsic protein (TIP, a protein body membrane marker). BiP and TIP were present in the lower phase, but were not detected in the upper phase. In addition, the polypeptide patterns of material in the upper and lower phases were very different. These observations suggested that high purity aleurone plasma membrane had been isolated. Although the procedure for isolating plasma membranes was applicable to both aleurone protoplasts and layers, the polypeptide patterns of plasma membranes prepared from these sources were very different. The major protein components of wild oat aleurone were 7 S and 12 S storage globulins. These proteins were present in the lower phase, but not in the plasma membrane enriched upper phase, after aqueous two-phase partitioning. Differential centrifugation studies showed that it was necessary to homogenise aleurone in a buffer of pH 6. 0 or less if a soluble protein fraction, essentially devoid of storage globulins, was to be obtained. The use of these fractionation techniques is discussed in relation to photoaffinity labelling of gibberellin (GA)-binding proteins in aleurone.  相似文献   

9.
An in vivo human chorionic gonadotropin (hCG)-receptor complex was solubilized from the subcellular fraction of ovarian and testicular tissues of rats that had been injected with 125-I-labeled hCG. The soluble hCG-receptor complex was partially characterized by Sepharose 6B chromatography in the presence of the nonionic detergent, Emulphogene, and was shown to have a molecular size of about 65 A. By this method it was also shown that the in vivo uptake of radioactivity by rat gonadal tissues represents 125-I-hCG and not the dissociated subunits or degradation products of the hormone. A soluble hCG-receptor complex isolated in vitro in approximately the same yield from both rat testicular and ovarian homogenates was shown to be the same size. The hCG-receptor appears to be specifically located in gonadal tissue; a corresponding hCG-receptor complex was not obtained from liver or kidney that incorporated significant levels of 125-I-hCG administered in vivo. Furthermore, a desialyzed hCG-receptor complex was obtained from rat testis but not liver; desialyzed hCG, like other desialyzed glycoproteins, is nonspecifically bound by rat liver homogenates. The binding of hCG and luteinizing hormone (LH) by rat testis receptor exhibits a high degree of specificity. Other glycoprotein hormones without LH activity, such as follicle-stimulating hormone and thyroid-stimulating hormone, and glycoproteins such as fetuin or alpha1-acid glycoprotein do not bind to the hCG/LH receptors. Desialyzed hCG was 2 times more effective in competing for binding to rat testis receptors than "native" hCG, indicating that caution must be exercised when the radioligand receptor assay is utilized to assay hCG preparations varying in sialic acid content.  相似文献   

10.
The uptake and subcellular processing of radiolabelled prolactin has been studied in male and female rats. Analytical subcellular fractionation of liver homogenates from rats injected with 125I-prolactin showed that in female rats the prolactin was primarily internalised to low density (1.12 g X cm-3) membranes. Approx. 10-15% of the total label was found in high density membranes, similar in distribution to lysosomal marker enzymes. In the normal male rat, prolactin was internalised solely to lysosomal type membranes. However, in male rats treated with estrogen, the distribution of prolactin was very similar to that seem in the female, indicating that internalisation to low density membrane is dependent on the presence of prolactin receptors. Gel exclusion chromatography showed that the prolactin internalised to the lysosomal membranes was extensively degraded whereas that associated with the low density membrane remained intact. Use of digitonin, to establish the identity of the low density membrane gave inconclusive results, but suggested that the prolactin was associated with membrane bearing NADH pyrophosphatase rather than the classical Golgi marker, galactosyltransferase.  相似文献   

11.
Brief exposure to the protein neurotoxin, beta-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labelled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes. In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial preparations (3.3 +/- 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 +/- 0.05 pmol/mg). It is also shown that labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude that beta-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

12.
Rat liver plasma membranes, enriched in blood-sinusoidal or bile-canalicular regions by differential and sucrose-gradient centrifugation, were further purified by partitioning in an aqueous polymer two-phase system. This method separates membranes according to differences in surface properties rather than size and density. A several-fold increase in the ratio of leucine aminopeptidase (a bile-canalicular marker) and 5'-nucleotidase to asialo-orosomucoid binding (a blood-sinusoidal marker) was obtained in one fraction, whereas another fraction gave a 2-3-fold increase in ratio of blood-sinusoidal to bile-canalicular markers. Furthermore, the markers for both regions of the plasma membrane, as well as markers for Golgi membranes and lysosomes, showed a heterogeneous behaviour on counter-current distribution.  相似文献   

13.
The uptake and subcellular processing of radiolabelled prolactin has been studied in male and female rats. Analytical subcellular fractionation of liver homogenates from rats injected with 125I-prolactin showed that in female rats the prolactin was primarily internalised to low density (1.12 g·cm?3) membranes. Approx. 10–15% of the total label was found in high density membranes, similar in distribution to lysosomal marker enzymes. In the normal male rat, prolactin was internalised solely to lysosomal type membranes. However, in male rats treated with estrogen, the distribution of prolactin was very similar to that seen in the female, indicating that internalisation to low density membrane is dependent on the presence of prolactin receptors. Gel exclusion chromatography showed that the prolactin internalised to the lysosomal membranes was extensively degraded whereas that associated with the low density membrane remained intact. Use of digitonin, to establish the identity of the low density membrane gave inconclusive results, but suggested that the prolactin was associated with membrane bearing NADH pyrophosphatase rather than the classical Golgi marker, galactosyltransferase.  相似文献   

14.
We have developed a method for isolation of plasma membranes from rabbit endometrium, with high yield and purification. Endometrial homogenates are precipitated with calcium chloride and the resulting supernatant is fractionated by centrifugation in a self-forming gradient of 20% Percoll. Before fractionation, the intact luminal epithelial surface was labelled with 125I-labelled soyabean agglutinin. Between buoyant densities of 1.015 and 1.017 g/ml, a discrete peak of surface label was obtained, which coincided with activities for 5'-nucleotidase and alkaline phosphatase, enzyme markers for the plasma membrane. This peak was well separated from the majority of cellular protein, and from marker enzyme activities for mitochondria and microsomes (NADH cytochrome C reductase) and lysosomes (acid phosphatase). Electron microscopy of the purified membranes showed membrane sheets and vesicles free from other cellular organelles. Analysis of detergent-soluble membrane proteins, fractionated by concanavalin A-affinity chromatography, revealed differences in the protein pattern of membranes from uteri of rabbits receptive (Day 6 of pregnancy) and non-receptive (Day 3) for implantation. The method will be useful for generation of immunological and affinity probes for surface antigens involved in ovoimplantation.  相似文献   

15.
The compartments of the Paramecium digestive system were investigated with wheat germ agglutinin (WGA). By use of cryosectioning or Lowicryl K4M embedding combined with pulse-chase studies and WGA-gold labeling, WGA binding sites were located on membranes of the phagosome-lysosome system, including all four stages of digestive vacuoles, the discoidal vesicles, acidosomes, and lysosomes. In addition, the contents of lysosomes, cisternae at the trans face of Golgi stacks, and coated and uncoated blebs and vesicles at the putative trans Golgi network bind to WGA. Crystal-containing vacuoles characteristic of mid-log to stationary-phase cultures are enclosed by heavily labeled membranes. Alveoli underlying the plasma membrane sometimes contain binding sites, particularly on their outer membranes. Ciliary membranes previously shown to be labeled with WGA-FITC are negative in frozen thin and Lowicryl K4M sections. The presence of WGA binding sites on the trans face of the Golgi stack is the first indication in ciliated protozoa, such as Paramecium, of probable Golgi complex involvement in glycosylation similar to that in higher organisms. WGA-labeled coated vesicles in the endoplasm apparently lose their coats and coalesce to form lysosomes. Our study shows that WGA can be used as a specific intracellular marker of all digestive system membranes and of lysosomal content. These results support and extend our published scheme of membrane flow and recycling in Paramecium by providing another means of demonstrating membrane relationships.  相似文献   

16.
Large amounts of injected radiolabeled low density lipoproteins have been found by others to accumulate primarily in the liver and studies in various types of isolated cells, including hepatocytes, have indicated the presence of specific cell membrane recognition sites for lipoproteins. In the present studies, the high affinity binding of radiolabeled low density lipoproteins ([125I]LDL, d 1.020--1.063 g/mL) was measured in the major subcellular fractions of porcine liver homogenates. The nuclear and mitochondrial fractions were 1.9- and 1.4-fold enriched in binding activity with respect to unfractionated homogenates and contained 15% and 12% of the total binding activity, respectively. The microsomes, which contained most of the plasma membranes and endoplasmic reticulum, were approximately 4-fold enriched in binding and contained 73% of the binding activity. Microsomal subfractions obtained by differential homogenization and centrifugation procedures were 5.6--7.0-fold enriched in LDL binding and contained 54--58% of the homogenate binding activity. They were separated by discontinuous sucrose density gradient centrifugation into fractions which contained "light" and "heavy" plasma membranes and endoplasmic reticulum. The heavy membrane fraction was 2--4 fold in binding with respect to the parent microsomes (16--22 fold with respect to the homogenate). There was no enrichment of binding activity in the other two fractions. Two plasma membrane "marker" enzymes, nucleotide pyrophosphatase and 5'-nucleotidase, were also followed. Of the two, binding in the sucrose density gradient subfractions most closely followed nucleotide pyrophosphatase, which was also most highly enriched (3.2--3.3-fold) in the heavy membrane fraction, but did not follow it exactly. The enzyme was 2-fold richer in the light membranes than in the parent microsomes, though the light membrane binding activity was only 0.4--1.4 times that of the parent microsomes. High affinity binding was time and temperature dependent, saturable, and inhibited by unlabeled low density lipoproteins but not by unrelated proteins. Binding was stimulated 2--3 fold Ca2+, was not affected by treatment with Pronase or trypsin and was inhibited by low concentrations of phospholipids and high density lipoproteins (HDL). Heparin-Mn2+ treatment of HDL did not affect its ability to inhibit [125I] LDL binding. The LDL recognition site was distinct from the liver membrane asialoglycoprotein receptor; LDL binding was not inhibited by desialidated fetuin. We conclude that porcine liver contains a high affinity binding site that recognizes features common to both pig low density and high density lipoproteins. Further studies may elucidate the significance of this binding site in lipoprotein metabolism.  相似文献   

17.
An improved aqueous two-phase polymer method has been developed for the isolation of sperm plasma membranes by manipulating various parameters that influence markedly the purity as well as yield of the membrane. The method consists of hypotonic shock of intact spermatozoa with 1.25 mM EDTA to dissociate the plasma membrane and dispersion of these cells to a two-phase polymer system consisting of 5.5% 252-Kd dextran and 4.2% 20-Kd polyethylene glycol prior to centrifugation at 9700 X g for 30 min when the two polymer phases are separated; the membrane fraction sediments at the interphase. The resulting membrane fraction was purified further by repeating the two-phase fractionation step. The yield of the membranes was approx. 35-40%, based on the recovery of the membrane-bound marker enzymes alkaline phosphatase and 5'-nucleotidase. The isolated membranes showed a high degree of purity as evidenced by phase contrast and electron microscopic studies and analyses of marker enzymes characteristic of cellular organelles. The yield and purity of the membranes have been found to be markedly dependent on the conditions of the hypotonic shock, obtained as a function of, EDTA concentration and on the molecular sizes of the dextran and polyethylene glycol that constitute the two-phase polymer system, as well as on the centrifugal force used for the sedimentation of the membrane.  相似文献   

18.
Studies have been conducted to characterize further the interaction between 125I-labeled bovine thyrotropin (TSH) and bovine thyroid plasma membranes. Sequential subcellular fractionation of thyroid homogenates yielded preparations of progressively greater specific binding activity, highest activity being found in fractions previously shown to contain predominately plasma membranes (Amir, S. M., Carraway, T.F., Kohn, L.D., and Winand, R.J. (1973) J. Biol. Chem. 248, 4092-4100). Although binding of 125I-TSH by plasma membranes was greatest at pH 6.0, studies were conducted at pH 7.45 as well as pH 6.0, and results obtained differed quantitatively, but not qualitatively. Binding was maximal at 0 degrees, 15 degrees, and 22 degrees and steady state values remained unchanged for at least 22 hours. At 37 degrees, binding was decreased by 40% at 1 hour; the loss was even greater (65%) at 50 degrees. A similar loss of binding was evident when membranes were preincubated without TSH at 37 degrees or higher and were then incubated with 125I-TSH at 0 degrees. Lineweaver-Burk analysis indicated that preincubation resulted in loss of receptor sites without change in affinity of residual receptors. Addition of Ca2+ (1 to 10 mM) to the preincubation medium prevented the effect of preincubation at 37 degrees by preserving the number of receptor sites without altering their affinity. Under similar conditions, Na+ and K+ were without protective effect. Membranes bound 45Ca2+ in a specific and saturable manner. Scatchard plots indicated a dissociatiion constant (Kd) of 9 X 10(-5) M and a capacity (n) of 54 nmol/mg of membrane protein. 45Ca2+ was also displaced from membranes by Mg2+ and Mn2+. Ca2+ had a biphasic effect on binding; low concentrations (1 to 10 muM) added to the incubation mixture stimulated binding, while higher concentrations (0.1 mM) caused inhibition. Mg2+ and Mn2+, at comparable concentrations, were also inhibitory, Na+ and K+ less so. In the case of Ca2+, both the stimulatory and inhibitory concentrations were lower than those required to achieve saturation of Ca2+-binding sites. Proteolytic enzymes (trypsin, alpha-chymotrypsin, and pronase) sharply reduced binding of 125I-TSH, owing to a decrease in receptor sites. Phospholipases A and C enhanced binding of TSH, while neuraminidase and beta-galactosidase were without measurable effect.  相似文献   

19.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

20.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号