首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nitrogenase (EC 1.7.99.2) activity in pea (Pisum savitum) nodules formed after infection with Rhizobium leguminosarum (lacking uptake hydrogenase) was measured as acetylene reduction, H2 evolution in air and H2 evolution in Ar:O2. With detached roots the relative efficiency, calculated from acetylene reduction, showed a decrease (from 55 to below 0%) with increasing temperature. With excised nodules and isolated bacteroids similar results were obtained. However, the relative efficiency calculated from H2 evolution in Ar:O2 was unaffected by temperature. Measurements on both excised nodules and isolated bacteroids showed a marked difference between acetylene reduction and H2 evolution in Ar:O2 with increased temperature, indicating that either acetylene reduction or H2 evolution in Ar:O2 are inadequate measures of nitrogenase activity at higher temperature.  相似文献   

2.
Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson. and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O2 partial pressure (pO2) rise, to the proximity of the starting and ending oxygen tensions to the pO2 optimum, and to the time for which the plant was exposed to the lower pO2. Oxygen-induced transients, induced both by step jumps in pO2 and by O2 pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do not appear to be a result of changes in nodule diffusion resistance.  相似文献   

3.
The mechanism of O2 protection of nitrogenase in the heterocysts of Anabaena cylindrica was studied in vivo. Resistance to O2 inhibition of nitrogenase activity correlated with the O2 tension of the medium in which heterocyst formation was induced. O2 resistance also correlated with the apparent Km for acetylene, indicating that O2 tension may influence the development of a gas diffusion barrier in the heterocysts. The role of respiratory activity in protecting nitrogenase from O2 that diffuses into the heterocyst was studied using inhibitors of carbon metabolism. Reductant limitation induced by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea increased the O2 sensitivity of in vivo acetylene reduction. Azide, at concentrations (30 mM) sufficient to completely inhibit dark nitrogenase activity (a process dependent on oxidative phosphorylation for its ATP supply), severely inhibited short-term light-dependent acetylene reduction in the presence of O2 but not in its absence. After 3 h of aerobic incubation in the presence of 20 mM azide, 75% of cross-reactive component I (Fe-Mo protein) in nitrogenase was lost; less than 35% was lost under microaerophilic conditions. Sodium malonate and monofluoroacetate, inhibitors of Krebs cycle activity, had only small inhibitory effects on nitrogenase activity in the light and on cross-reactive material. The results suggest that oxygen protection is dependent on both an O2 diffusion barrier and active respiration by the heterocyst.  相似文献   

4.
When excised root nodules ofCoriaria arborea are assayed for nitrogenase activity at various pO2 they show a broad optimum between 20 and 40 kPa O2, with some evidence for adaptation. Continuous flow assays of nodulated root systems of intact plants indicate that Coriaria shows an acetylene induced decline in nitrogenase activity. When root systems were subject to step changes in pO2 nitrogenase activity responded with a steep decline followed by a slower rise in activity both at lower and higher than ambient pO2. Thus Coriaria nodules are able to adapt rapidly to oxygen levels well above and well below ambient. Measurement of nodule diffusion resistance showed that the adaptation is accompanied by rapid increase in resistance at above ambient pO2 and decrease in resistance at below ambient pO2. Plants grown with root systems at pO2 from 5–40 kPa O2 did not differ in growth or nodulation. The anatomy of Coriaria nodules shows they have a dense periderm which encircles the nodule and also closely invests the infected zone. The periderm is both thicker and more heavily suberised in nodules grown at high pO2 than at low pO2. Vacuum infiltration of India ink indicates that oxygen diffusion is entirely through the lenticel and via a small gap adjacent to the stele.  相似文献   

5.
Frankia sp., the actinomycetous endophyte in nitrogen-fixing actinorhizal nodules, may differentiate two forms from its hyphae: vesicles and sporangia. In root nodules of Comptonia peregrina (L.) Coult. and Myrica gale L., sporangia may be either absent or present. Nitrogenase activity and symbiotic efficiency were contrasted in spore(+) and spore(−) nodules of these two host genera. Seedlings of C. peregrina nodulated with the spore(+) inoculum showed only 60% of the nitrogenase activity and 50% of the net size of their spore(−) counterparts after 12 weeks of culture. Measurements of acetylene reduction (i.e., nitrogenase activity) were coordinated with samplings of nodules for structural studies. Significant differences in acetylene reduction rates were discernible between spore(+) and spore(−) nodules commencing 4 weeks after nodulation, concomitant with the maturation of sporangia in the nodule. Spore(+) nodules ultimately reached less than half of the rate of nitrogenase activity of spore(−) nodules. Both types of nodules evolved only small amounts of molecular hydrogen, suggesting that both were equally efficient in recycling electrons lost to the reduction of hydrogen ions by nitrogenase. Respiratory cost of nitrogen fixation, expressed as the quotient of micromole CO2 to micromole ethylene evolved by excised nodules, was significantly greater in spore(+) than in spore(−) nodules. M. gale spore(−) nodules showed variable effectivity, though all had low CO2 to ethylene evolution ratios. M. gale spore(+) nodules resembled C. peregrina spore(+), with low effectivity and high respiratory cost for nitrogen fixation.  相似文献   

6.
The objectives of this study were to determine whether attached nodules of soybean (Glycine max L. Merr.) could adjust to gradual increases in rhizosphere pO2 without nitrogenase inhibition and to determine whether the nitrogenase activity of the nodules is limited by pO2 under ambient conditions. A computer-controlled gas blending apparatus was used to produce linear increases (ramps) in pO2 around attached nodulated roots of soybean plants in an open gas exchange system. Nitrogenase activity (H2 production in N2:O2 and Ar:O2) and respiration (CO2 evolution) were monitored continuously as pO2 was ramped from 20 to 30 kilopascals over periods of 0, 5, 10, 15, and 30 minutes. The 0, 5, and 10 minute ramps caused inhibitions of nitrogenase and respiration rates followed by recoveries of these rates to their initial values within 30 minutes. Distinct oscillations in nitrogenase activity and respiration were observed during the recovery period, and the possible basis for these oscillations is discussed. The 15 and 30 minute ramps did not inhibit nitrogenase activity, suggesting that such inhibition is not a factor in the regulation of nodule diffusion resistance. During the 30 minute ramp, a stimulation of nitrogenase activity was observed, indicating that an O2-based limitation to nitrogenase activity occurs in soybean nodules under ambient conditions.  相似文献   

7.
A flow-through gas system was used to study the effects of disturbanceon nitrogenase (acetylene reduction) activity of nodulated rootsystems of soyabean (Glycine max) and white clover (Trifoliumrepens). Detopping plus removal of the rooting medium (by shaking)produced a substantial decrease in maximum nitrogenase activity.This response is due to a reduction in oxygen flux to the bacteroidscaused by an increase in the oxygen diffusion resistance ofthe nodule. The decrease in maximum nitrogenase activity wasmuch smaller for roots subjected to detopping only. Thus, theeffect of root shaking is more important than that of shootremoval. The effect of detopping plus root shaking on nitrogenase activityoccurred whether the plants were equilibrated and assayed at25°C or 15°C. However, the effect of disturbance onthe oxygen diffusion resistance of the nodules, and thus onnitrogenase activity, was greater at the higher temperature.At the lower temperature the oxygen diffusion resistance ofthe nodules had already been increased in response to the reducedrequirement for oxygen. These nodules were less susceptibleto the effects of disturbance. Thus, comparisons of the effectsof equilibration temperature on nitrogenase activity produceddifferent results depending on whether intact or disturbed systemswere used. With intact systems activity was lower at the lowertemperature but with detopped/shaken roots the lowest activityoccurred at the higher temperature. It is concluded that the use of detopped/shaken roots can producesubstantial errors in the acetylene reduction assay, which makesthe assay invalid even when used for comparative purposes. However,comparisons with rates of 15N2 fixation and H2 production showthat accurate measurements of nitrogenase activity can be obtainedfrom maximum rates of acetylene reduction by intact plants ina flow-through gas system. The continued use of assay proceduresin which cumulated ethylene production from disturbed systemsis measured in closed vessels must be questioned. Key words: Nodules, acetylene, nitrogenase activity  相似文献   

8.
为了解非豆科固氮树种的固氮酶和N_2O还原酶(Nos)活性,采用乙炔还原法和乙炔抑制技术对细枝木麻黄(Casuarina cunninghamiana)和江南桤木(Alnus trabeculosa)离体根瘤及立地土壤的两种酶活性进行了研究。结果表明,离体根瘤只在厌氧条件下有固氮酶活性,在好氧条件下有Nos活性。根瘤区根际土和非根瘤区根际土的固氮酶活性在好氧条件大于厌氧条件,Nos活性只表现在厌氧条件下。在好氧条件下,根瘤区根际土和非根瘤区根际土的固氮酶活性无显著差异;根瘤区根际土的Nos活性显著大于非根瘤区根际土。除离体根瘤在好氧条件下不表现固氮酶活性外,细枝木麻黄和桤木的离体根瘤、根瘤区根际土和非根瘤区根际土的固氮酶活性均都大于Nos活性。好氧条件下根瘤区根际土的固氮酶活性与非根瘤区根际土的呈极显著正相关,而厌氧条件下根瘤的固氮酶活性与好氧条件下根瘤区根际土和非根瘤区根际土固氮酶活性、好氧条件下根瘤的Nos活性与厌氧条件下根瘤区根际土和非根瘤区根际土Nos活性均呈极显著负相关。这为研究弗兰克氏菌结瘤植物共生固氮体系对N2O汇强度的影响和调控奠定基础。  相似文献   

9.
Nodulated soybean (Glycine max L. Merr. cv White Eye inoculated with Bradyrhizobium japonicum strain CB 1809) plants were cultured in the absence of combined N from 8 to 28 days with their root systems maintained continuously in 1, 2.5, 5, 10, 20, 40, 60, or 80% O2 (volume/volume) in N2. Plant dry matter yield was unaffected by partial pressure of oxygen (pO2) and N2 fixation showed a broad plateau of maximum activity from 2.5 to 40 or 60% O2. Slight inhibition of nitrogenase activity occurred at 1% O2 and as much as 50% inhibition occurred at 80% O2. Low pO2 (less than 10%) decreased nodule mass on plants, but this was compensated for by those nodules having higher specific nitrogenase activities. Synthesis and export of ureides in xylem was maintained at a high level (70-95% of total soluble N in exudate) over the range of pO2 used. Measurements of nitrogenase (EC 1.7.99.2) activity by acetylene reduction indicated that adaptation of nodules to low pO2 was largely due to changes in ventilation characteristics and involved increased permeability to gases in those grown in subambient pO2 and decreased permeability in those from plants cultured with their roots in pO2 greater than ambient. A range of structural alterations in nodules resulting from low pO2 were identified. These included increased frequency of lenticels, decreased nodule size, increased volume of cortex relative to the infected central tissue of the nodule, as well as changes in the size and frequency of extracellular voids in all tissues. In nodules grown in air, the inner cortex differentiated a layer of four or five cells which formed a band, 40 to 50 micrometers thick, lacking extracellular voids. This was reduced in nodules grown in low pO2 comprising one or two cell layers and being 10 to 20 micrometers thick in those from 1% O2. Long-term adaptation to different external pO2 involved changes which modify diffusive resistance and are additional to adjustments in the variable diffusion barrier.  相似文献   

10.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

11.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

12.
Studies on soybean nodule senescence   总被引:2,自引:7,他引:2       下载免费PDF全文
Klucas RV 《Plant physiology》1974,54(4):612-616
Soybean Glycine max. L. Merr. nodule senescence was studied using the loss of acetylene reduction by intact tap root nodules as its indication. Tap root nodules from two varieties (Calland and Beeson) of field-grown soybeans were used. The specific activities of nitrogenase (micromoles/minute gram fresh weight of nodules) as measured by the acetylene reduction assay decreased abruptly between 58 to 65 and 68 to 75 days after planting the Beeson and Calland soybeans, respectively. Major changes were not detected in dry weight, total nitrogen, and leghemoglobin levels during the period when in vivo nitrogenase activity declined. Ammonium levels in the cytosol of nodules and poly-β-hydroxybutyrate increased moderately just prior to or coincidental with the loss of nitrogenase activity. Neither enzymes that have been postulated to be involved in ammonium assimilation nor NADP+-specific isocitrate dehydrogenase exhibited any large changes in specific activities during the initial period when nitrogenase activity declined.  相似文献   

13.
The interaction between carbon substrates and O2 and their effects on nitrogenase activity (C2H2) were examined in detached nodules of pea (Pisum sativum L. cv “Sparkle”). The internal O2 concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O2 for 2 hours resulted in a 2- to 10-fold increase in internal O2, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O2 was lowered. Nitrogenase activity was stimulated by succinate but only at high external O2. Oxygen uptake increased linearly with external O2 but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O2 concentration within detached nodules.  相似文献   

14.
Hansen, A. P., Pate, J. S. and Atkins, C. A. 1987. Relationshipsbetween acetylene reduction activity, hydrogen evolution andnitrogen fixation in nodules of Acacia spp.: Experimental backgroundto assaying fixation by acetylene reduction under field conditions.—J.exp. Bot. 38: 1–12 Glasshouse grown, symbiotically-dependent seedlings of Acaciaalata R.Br., .A. extensa Lindl., and A. pulchella R.Br. wereexamined for acetylene reduction in closed assay systems usingundisturbed potted plants, excavated whole plants, nodulatedroots or detached nodules. Nitrogenase activity declined sharplyover the first hour after exposure of detached nodules to acetylene(10% v/v in air), less steeply or not at all over a 3 h periodin assays involving attached nodules. Using detached nodules,rates of acetylene reduction, nitrogen (15N2) fixation, andhydrogen evolution in air (15N2) and acetylene-containing atmosphereswere measured in comparable 30 min assays. Total electron flowthrough nitrogenase in air was determined from rates of nitrogen(15N2) fixation ( ? 3) plus hydrogen evolution, that in thepresence of acetylene from rates of acetylene reduction andhydrogen evolution in air: acetylene. Values for the ratio ofelectron flow in air: acetylene to that in air ranged from 0?43to 0?83 in A. pulcheila, from 0?44 to 0?66 in A. alala and from0?37 to 0?70 in A. extensa, indicating substantial inhibitionof electron flow through nitrogenase of detached nodules byacetylene. Relative efficiencies of nitrogenase functioningbased on hydrogen evolution and acetylene reduction were from0?15 to 0?79, those based on nitrogen (15N2) fixation and hydrogenevolution from 0?53 to 0?87. Molar ratios of acetylene reducedto nitrogen (15N2) fixed were 2?82 ? 0?24, 201 ? 0?15, and 1?91? 0?11 (?s.e.; n = 7) for A. pulcheila,A. extensa and A. alata respectively A standard 5–10 min acetylene reduction assay, conductedon freshly detached unwashed nodules in daytime (12.00–14.00h), was calibrated for field use by comparing total N accumulationof seedlings with estimated cumulative acetylene reduction overa 7-week period of glasshouse culture. Molar ratios for acetylenereduced: nitrogen fixed using this arbitrary method were 3?58for A. alata, 4?82 for A. extensa and 1?60 for A. pulchella.The significance of the data is discussed. Key words: Acacia spp, nitrogenase functioning  相似文献   

15.
The filamentous bacterium Frankia of the Actinomycetales, isolated from the nitrogen-fixing root nodules of certain woody plants, has shown nitrogenase activity in culture, using the acetylene reduction method. In the present work, nitrogenase activity in pure cultures of Frankia sp. CpIl is confirmed using mass spectrometric measurements of 15N2 incorporation. After addition of carrier NH4+ to digested cultures, those exposed to 15N2 (25 atom%) had a 15N content of 3.16 atom% compared to 0.354 atom% 15N in the controls.  相似文献   

16.
The gas exchange characteristics of intact attached nodulated roots of pea (Pisum sativum cv. Finale X) and lupin (Lupinus albus cv. Ultra) were studied under a number of environmental conditions to determine whether or not the nodules regulate resistance to oxygen diffusion. Nitrogenase activity (H2 evolution) in both species was inhibited by an increase in rhizosphere pO2 from 20% to 30%, but recovered within 30 min without a significant increase in nodulated root respiration (CO2 evolution). These data suggest that the nodules possess a variable barrier to O2 diffusion. Also, nitrogenase activity in both species declined when the roots were either exposed to an atmosphere of Ar:O2 or when the shoots of the plants were excised. These declines could be reversed by elevating rhizosphere pO2, indicating that the inhibition of nitrogenase activity resulted from an increase in gas diffusion resistance and consequent O2-limitation of nitrogenase-linked respiration. These results indicate that nodules of pea and lupin regulate their internal O2 concentration in a manner similar to nodules of soybean, despite the distinct morphological and biochemical differences that exist between the nodules of the 3 species. Experiments in which total nitrogenase activity (TNA = H2 production in Ar:O2) in pea and lupin nodules was monitored while rhizosphere pO2 was increased gradually to 100%, showed that the resistance of the nodules to O2 diffusion maintains nitrogenase activity at about 80% of its potential activity (PNA) under normal atmospheric conditions. The O2-limitation coefficient of nitrogenase (OLCN= TNA/PNA) declined significantly with prolonged exposure to Ar:O2 or with shoot excision. Together, these results indicate a significant degree of O2-limitation of nitrogenase activity in pea and lupin nodules, and that yields may be increased by realizing full potential activity.  相似文献   

17.
18.
Soybean (Glycine max [L.] Merr.) seedlings grown in the absence of combined N and in an Ar:O2 (79:21, volume/volume) atmosphere had greater seedling and nodule mass, threefold higher acetylene reducing activity per gram fresh weight nodules, no observable increase in nitrogenase Fe-protein, and a higher energy charge than did control plants. A sharp fall in acetylene reducing activity and energy charge accompanying stem-girdling was prevented by exogenous succinate, a result consistent with a path from the roots to the nodule other than via the phloem.  相似文献   

19.
Summary Acetylene reduction and H2 evolution by legume root nodules from several plant species depended on incubation temperature; some nodules were active from 2 to 40°C. Acetylene reduction rates differed between plant species, with maximum activity at temperatures between 20 and 30°C forVicia faba, V. sativa, Trifolium pratense, T. subterraneum, Medicago truncatula and soybean, at 35°C forM. sativa and at 40°C for cowpea. OnlyM. sativa and cowpea reduced substantial amounts at 37.5°C. Temperatures from 2 to 10°C only slightly lessened activity ofT. subterraneum andV. sativa nodules. Nitrogenase functioned at temperatures which prevent establishment of other aspects of the symbiosis. The rate of acetylene reduction was constant for several hours at temperatures below 15°C, and activity continued for several days at 2°C for some species, but declined with time at warmer temperatures. Some nitrogenase was denatured at warmer temperatures, but the O2 tension in the assay vial also affected activity. In closed assay vessels nodule respiration decreased the pO2 and reduced nitrogenase activity. Activity was restored by adding O2 or regassing assay vials with air or Ar/O2. When the pO2 was maintained, acetylene reduction and H2 evolution by detached soybean nodules continued unchanged for 6 h.  相似文献   

20.
Acetylene-reducing activity of detached pea nodules was determined by submerging the nodules in buffer solution [tris(hydroxymethyl)aminomethane-hydrochloride, pH 7.4] containing 100 mM sodium succinate and incubating under a gas phase of 90% O2 and 10% C2H2. The nitrogenase activity was 4 to 8 μmol of C2H4 formed per g of nodule fresh weight per h and remained constant for at least 4 h. Addition of NH4Cl to the buffer solution (at a concentration of 10 mM or more) resulted in a significant decrease of nitrogenase activity, which was more pronounced at higher concentrations of ammonium chloride. The inhibition of nitrogenase activity by NH4Cl was reversible; when the NH4Cl-containing buffer solution was replaced by buffer without NH4Cl, the original activity was partly restored. Treatment of the nodules with NH4Cl had almost no effect on the amount of nitrogenase, as measured by the acetylene-reducing activity of ethyl-enediaminetetraacetate-toluene-treated bacteroid suspensions. The effect of NH4Cl was largely eliminated by simultaneous addition of 10 mM methionine sulfoximine to the assay solution. This suggests that the assimilation of ammonium ions by glutamine synthetase controls the functioning of nitrogenase activity in the nodules. However, no effect of glutamine, glutamate, or aspartate on the acetylene reduction by detached nodules could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号