共查询到20条相似文献,搜索用时 15 毫秒
1.
N
-(carboxymethyl)lysine, an advanced glycation end product, is present in the human lens. The effects of CML formation on protein conformation and stability were studied using the recombinant C-crystallin as a model. Conformational change was studied by spectroscopic measurements such as fluorescence and circular dichroism. Conformational stability was determined by unfolding with heat. The results indicated that no conformational change was observed due to CML formation, but conformational stability decreased. These observations can be explained in terms of the relatively stable structure of -crystallin, especially when compared with other crystallins. The lens nucleus is rich in -crystallin and its stable conformation can assist -crystallin sustained insults and remain soluble. 相似文献
2.
Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases. 相似文献
3.
R J Castellani P L Harris L M Sayre J Fujii N Taniguchi M P Vitek H Founds C S Atwood G Perry M A Smith 《Free radical biology & medicine》2001,31(2):175-180
Advanced glycation end products are a diverse class of posttranslational modifications, stemming from reactive aldehyde reactions, that have been implicated in the pathogenesis of a number of degenerative diseases. Because advanced glycation end products are accelerated by, and result in formation of, oxygen-derived free radicals, they represent an important component of the oxidative stress hypothesis of Alzheimer disease (AD). In this study, we used in situ techniques to assess N(epsilon)-(Carboxymethyl)lysine (CML), the predominant advanced glycation end product that accumulates in vivo, along with its glycation-specific precursor hexitol-lysine, in patients with AD as well as in young and aged-matched control cases. Both CML and hexitol-lysine were increased in neurons, especially those containing intracellular neurofibrillary pathology in cases of AD. The increase in hexitol-lysine and CML in AD suggests that glycation is an early event in disease pathogenesis. In addition, because CML can result from either lipid peroxidation or advanced glycation, while hexitol-lysine is solely a product of glycation, this study, together with studies demonstrating the presence of 4-hydroxy-2-nonenal adducts and pentosidine, provides evidence of two distinct oxidative processes acting in concert in AD neuropathology. Our findings support the notion that aldehyde-mediated modifications, together with oxyradical-mediated modifications, are critical pathogenic factors in AD. 相似文献
4.
Friess U Waldner M Wahl HG Lehmann R Haring HU Voelter W Schleicher E 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,794(2):273-280
We propose a specific, reproducible and sensitive HPLC method for the determination of N(epsilon)-(carboxymethyl)lysine (CML) excreted in urine. Total CML was measured in acid hydrolysates of urine samples, while free CML was measured in acetonitrile-deproteinised urine samples using a RP-HPLC method with ortho-phtaldialdehyde (OPA)-derivatisation and fluorescence detection suited for automation. We compared the CML excretion of 51 non-proteinuric patients with diabetes mellitus (DM) (age 57+/-14 years, HbA1c 8.0+/-1.8%) to 42 non-diabetic controls (C) (age 45+/-17 years). The urinary excretion of total CML in diabetic patients was increased by approximately 30% (DM: 0.58+/-0.21; C: 0.45+/-0.14 microM/mmol creatinine; P<0.001). While urinary excretion of free CML was not significantly different, excretion of bound CML was increased (DM: 0.36+/-0.17; C: 0.27+/-0.14; P<0.05) in diabetic patients. CML excretion was correlated with protein and albumin excretion, but did not correlate with HbA1c, duration of DM or diabetic complications such as neuropathy or retinopathy. Furthermore, no age-dependent change of total CML excretion was found, while free CML excretion was lower in younger subjects. The specific and sensitive determination of CML by RP-HPLC of its OPA-derivative is well suited for automation and better than that of less defined glycoxidation products (AGEs). 相似文献
5.
Identification and quantification of N(epsilon)-(Hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry 总被引:1,自引:0,他引:1
Kato Y Yoshida A Naito M Kawai Y Tsuji K Kitamura M Kitamoto N Osawa T 《Free radical biology & medicine》2004,37(11):1864-1874
The identification and quantification of N(epsilon)-(hexanoyl)lysine (N(epsilon)-HEL), which was found from the reactions between lipid hydroperoxide and lysine, from human urine was examined using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The N(epsilon)-HEL in the partially purified urine fraction was identified using LC/MS/MS by several approaches including precursor/product ion scans. The peak found by the multiple-reaction monitoring (MRM) of the collision-induced fragmentation of N(epsilon)-HEL was clearly observed in urine, and the elution position coincided with the synthetic standard N(epsilon)-HEL. The product, estimated N(epsilon)-HEL, was absorbed by a specific antibody to N(epsilon)-HEL. Moreover, N(alpha)-HEL, one of the plausible hexanoyl adducts from the reaction between the N(alpha) moiety of L-lysine and the peroxidized lipid, was hardly detected in urine samples, suggesting that the origin of the N(epsilon)-HEL is the peroxidized lipid-modified proteins but not artificial hexanoylated L-lysine. Using the MRM technique, the amount of urinary N(epsilon)-HEL from the control subjects (observed healthy) was estimated to be 1.58 +/- 0.23 mumol/mol of creatinine. A comparative study of the urinary N(epsilon)-HEL with an oxidative stress marker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, showed a high correlation (r = 0.844) between the two biomarkers. Furthermore, the quantification of N(epsilon)-HEL in the control and diabetic urines revealed that the urinary N(epsilon)-HEL from diabetic subjects (3.21 +/- 0.65 mumol/mol of creatinine) was significantly higher than that from the control subjects. 相似文献
6.
J Bello 《Biopolymers》1988,27(10):1627-1640
Poly(trimethyl-L-lysine), [Lys(Me3)]n, is converted from random coil to α-helix at about 1/30 of the NaClO4 concentration required by poly(L-lysine), (Lys)n. NaClO4 generates turbidity in [Lys(Me)3]n at concentrations above that required for helix formation, and decreases turbidity above lM NaClO4. The turbidity runs parallel to enhanced, and then decreased, fluorescence of a dansyl label. Helix formation per se does not induce enhanced fluorescence. Increasing NaClO4 concentration increases Tm linearly with log[NaClO4] for both (Lys)n and [Lys(Me3)]n until the denaturing effect of high NaClO4 sets in. Increasing NaClO4 also increases the breadth of the transition. Heating helical [Lys(Me3)]n or (Lys)n does not produce a CD spectrum resembling that of “random-coil” (Lys)n, except for [Lys(Me3)]n at relatively low NaClO4 concentration. 相似文献
7.
Tauer A Knerr T Niwa T Schaub TP Lage C Passlick-Deetjen J Pischetsrieder M 《Biochemical and biophysical research communications》2001,280(5):1408-1414
Conventional peritoneal dialysis fluids (PDFs) lead to formation of advanced glycation end-products (AGE) in the peritoneal membrane. In this study, we investigated in vitro the dependence of AGE formation on regular changes of PDFs, as performed during continuous ambulatory peritoneal dialysis (CAPD), and on the contribution of high glucose concentration versus glucose degradation products (GDPs). Under conditions similar to CAPD, protein glycating activity of a conventional single chamber bag PDF (CAPD 4.25%), two double chamber bag PDFs (CAPD Balance 4.25% and CAPD Bicarbonate 4.25%) and a sterile filtered control was measured in vitro by N(epsilon)-(carboxymethyl)lysine (CML) and imidazolones, two well characterized, physiologically relevant AGE structures. Regular changes of PDFs increased AGE formation (CML 3.3-fold and imidazolone 2.6-fold) compared to incubation without changes. AGE formation by CAPD 4.25% was increased compared to control (imidazolones 7.9-fold and CML 3.3-fold) and the use of double chamber bag PDFs led to a decrease of imidazolones by 79% (CAPD Bicarbonate 4.25%) and by 66% (CAPD Balance 4.25%) and to CML contents similar to the control. These results indicate that a major part of AGEs were formed by GDPs in PDFs, whereas only a minor part was due to high glucose concentration. The use of double chamber bag fluids can reduce AGE formation considerably. 相似文献
8.
Glycidaldehyde (GDA) is a bifunctional alkylating agent that has been shown to be mutagenic in vitro and carcinogenic in rodents. However, the molecular mechanism by which it exerts these effects is not established. GDA is capable of forming exocyclic hydroxymethyl-substituted etheno adducts on base residues in vitro. One of them, 7-(hydroxymethyl)-1,N6-ethenoadenine (7-hm-epsilonA), was identified as the principal adduct in mouse skin treated with GDA or a glycidyl ether. In this work, using defined oligonucleotides containing a site-specific 7-hm-epsilonA, the human and mouse alkylpurine-DNA-N-glycosylases (APNGs), responsible for the removal of the analogous 1,N6-ethenoadenine (epsilonA) adduct, are shown to recognize and excise 7-hm-epsilonA. Such an activity can be significantly modulated by both 5' neighboring and opposite sequence contexts. The efficiency of human or mouse APNG for excision of 7-hm-epsilonA is about half that, or similar to the excision of epsilonA, respectively. When human or mouse cell-free extracts were tested, however, the extent of 7-hm-epsilonA excision is dramatically lower than that for epsilonA, suggesting that, in the crude extracts, the APNG activities toward these two adducts are differentially affected. Using cell-free extracts from APNG deficient mice, this enzyme is shown to be the primary glycosylase excising 7-hm-epsilonA. A structural approach, using molecular modeling, was employed to examine how the structure of the 7-hm-epsilonA adduct affects DNA conformation, as compared to the epsilonA adduct. These novel substrate specificities could have both biological and structural implications. 相似文献
9.
J Wilson F R Rickles P B Armstrong L Lorand 《Biochemical and biophysical research communications》1992,188(2):655-661
Clots were allowed to form in samples of whole blood taken from the American horseshoe crab, Limulus polyphemus, in the absence and presence of dansylcadaverine (16), and were analyzed for their contents of N epsilon(gamma-glutamyl)lysine and gamma-glutamyl-dansylcadaverine. Clots obtained without dansylcadaverine yielded significant amounts of N epsilon(gamma-glutamyl)lysine product. Clots formed in the presence of dansylcadaverine yielded only gamma-glutamyl-dansylcadaverine. Formation of these products reflects on the activity of transglutaminase released from the blood cells during coagulation. 相似文献
10.
S-[2-(N7-guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane 总被引:3,自引:0,他引:3
The reaction of 1,2-dibromoethane and glutathione with DNA in the presence of glutathione S-transferase results in the formation of a single major DNA adduct, which can be released by thermal hydrolysis at neutral pH and separated by octadecylsilyl and propylamino high-performance liquid chromatography. The same DNA adduct is the only major one formed in livers of rats treated with 1,2-dibromo[1,2-14C]ethane. The DNA adduct was identified as S-[2-(N7-guanyl)ethyl]glutathione: (1) The chromatographic behavior was altered by treatment with gamma-glutamyl transpeptidase or Streptomyces griseus protease. (2) The molecular ions observed in positive and negative mode fast atom bombardment mass spectrometry were those expected for the structure when either glycerol or a mixture of dithiothreitol and dithioerythritol was used as the bombardment matrix. (3) The two-dimensional 1H NMR correlated spectroscopy spectrum of the DNA adduct was compared to the spectra of glutathione, oxidized glutathione, and N7-methylguanine and found to be consistent with the assigned structure. No evidence for in vitro or in vivo opening of the guanyl imidazole ring was observed under these conditions. The structure of the adduct supports a pathway involving enzyme-catalyzed conjugation of 1,2-dibromoethane with glutathione, non-enzymatic dehydrohalogenation of the resulting half-mustard to form a cyclic episulfonium ion, and attack of the N7 nitrogen of DNA guanine on the episulfonium ion to generate this major DNA adduct, which may be related to the carcinogenicity of this chemical. 相似文献
11.
Shang-Jun Yin Jae-Rin Lee Hyunchang Kwak Bit-Na Lee Ji-Won Han Myong-Joon Hahn 《Journal of biomolecular structure & dynamics》2020,38(9):2633-2649
AbstractPreviously, we detected that 14-3-3 protein epsilon (YWHAE) was involved in the pathogenesis of atopic dermatitis (AD) and tyrosinase-mediated pigmentation. In this study, we aimed to identify critical factors associated with YWHAE in human keratinocytes using high-throughput screening (HTS) approaches to reveal its functions in skin. We overexpressed YWHAE in human HaCaT keratinocytes and then conducted serial HTS studies, including RNA sequencing integrated with antibody arrays and the implementation of bioinformatics algorithms. Cumulatively, these approaches identified several novel genes in keratinocytes associated with the function of YWHAE including KRT9, KRT1, KRT6C, BST2, CIB2, APH1B, ACTC1, IFI27, TUBA1A, CAPN6, UTY, MX2, and MAPK15, based on RNA sequencing data, and MAPK1, MMP2, TYK2, NOS3, and CASP3, based on antibody array data. In particular, CD37 is a unique gene that was detected and validated in all the methods applied in this study. By integrating the datasets obtained from these HTS studies and utilizing the strengths of each method, we obtained new insights into the functional role of YWHAE in skin keratinocytes. The approach used here could contribute to the clinical understanding of YWHAE-associated applications in the treatment of AD disease. Abbreviations DAVID the database for annotation, visualization and integrated discovery HTS High-throughput screening KEGG Kyoto Encyclopedia of Genes and Genomes PPI protein-protein interactions Communicated by Ramaswamy H. Sarma 相似文献
12.
J Bello 《Biopolymers》1992,32(2):185-188
Helix formation in (Lys)n.HClO4 and poly(N epsilon,N epsilon,N epsilon-trimethyl-L-lysine).HClO4 +AD(LysMe3)n.HClO4+BD is dependent on peptide concentration and on molecular weight. For (LysMe3)n.HClO4 of degree of polymerization (DP) 2510 the midpoint of the coil-to-helix transition is 2 mM and for DP of 190 it is 5 mM. For (Lys)n.HClO4 the peptide concentration for half-helix is 30-60 times as high, and is only weakly dependent, if at all, on molecular weight. Helix formation is an intermolecular process. The use of methylated (Lys)n as the perchlorate permits study of the intermolecular coil-helix transition at low concentration, instead of the high concentration (ca. 1-2 M) required for (Lys)n.HBr. At constant peptide concentration helix content increases with added NaClO4. The higher the peptide concentration, the less NaClO4 is needed to induce helix. 相似文献
13.
The crystal and molecular structure of a new 4-methylpyridinium tetrachloroferrate(III) of molecular formula [4-Me(Py)H][FeCl4] was determined. The iron cation is four coordinated by chlorine anions, and it adopts a slightly distorted tetrahedral coordination with two angles smaller, three equal and one larger than tetrahedral one. The compound is isostructural with its 2- and 3-methylpyridinium analogues. Magnetic measurements of the powdered samples gave negative values of the Weiss constants equal −7.3 K, −6.6 K and −6.2 K for [2-Me(Py)H][FeCl4], [3-Me(Py)H][FeCl4] and [4-Me(Py)H][FeCl4], respectively, which suggest antiferromagnetic coupling. The susceptibility curves of all complexes exhibit maxima indicating the presence of antiferromagnetic ordering with a Neel temperature of approximately 7 K. 相似文献
14.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex. 相似文献
15.
Poly(A) polymerase (PAP) is a key enzyme responsible for the addition of the poly(A) at the 3' end of pre-mRNA. The C-terminal region of mammalian PAP carries target sites for protein-protein interaction with the 25 kDa subunit of cleavage factor I and with splicing factors U1A and U2AF65. We used a yeast two-hybrid screen to identify 14-3-3epsilon as an additional protein binding to the C-terminal region of PAP. Interaction between PAP and 14-3-3epsilon was confirmed by both in vitro and in vivo binding assays. This interaction is dependent on PAP phosphorylation. Deletion analysis of PAP suggests that PAP contains multiple binding sites for 14-3-3epsilon. The binding of 14-3-3epsilon to PAP inhibits the polyadenylation activity of PAP in vitro, and overexpression of 14-3-3epsilon leads to a shorter poly(A) mRNA tail in vivo. In addition, the interaction between PAP and 14-3-3epsilon redistributes PAP within the cell by increasing its cytoplasmic localization. These data suggest that 14-3-3epsilon is involved in regulating both the activity and the nuclear/ cytoplasmic partitioning of PAP through the phosphorylation-dependent interaction. 相似文献
16.
Fujioka Y Arano Y Ono M Uehara T Ogawa K Namba S Saga T Nakamoto Y Mukai T Konishi J Saji H 《Bioconjugate chemistry》2001,12(2):178-185
Renal localization of radiolabeled antibody fragments constitutes a problem in targeted imaging and radiotherapy. Recently, we reported use of a novel radioiodination reagent, 3'-[131I]iodohippuryl N(epsilon)-maleoyl-L-lysine (HML), that liberates m-iodohippuric acid before antibody fragments are incorporated into renal cells. In mice, HML-conjugated Fab demonstrated low renal radioactivity levels from early postinjection times. In this study, renal metabolism of HML-conjugated Fab fragments prepared by different thiolation chemistries and by direct radioiodination were investigated to determine the mechanisms responsible for the low renal radioactivity levels. Fab fragments were thiolated by 2-iminothiolane modification or by reduction of disulfide bonds in the Fab fragments, followed by conjugation with radioiodinated HML to prepare [131I]HML-IT-Fab and [125I]HML-Fab, respectively. In biodistribution studies in mice, both [131I]HML-IT-Fab and [125I]HML-Fab demonstrated significantly lower renal radioactivity levels than those of [125I]Fab. In subcellular distribution studies, [125I]Fab showed migration of radioactivity from the membrane to the lysosomal fraction of the renal cells from 10 to 30 min postinjection. On the other hand, the majority of the radioactivity was detected only in the membrane fraction at the same time points after injection of both [131I]HML-IT-Fab and [125I]HML-Fab. In metabolic studies, while [125I]Fab remained intact at 10 min postinjection, both HML-conjugated Fab fragments generated m-iodohippuric acid as a radiometabolite at the same postinjection time. [131I]HML-IT-Fab registered two radiometabolites (intact [131I]HML-IT-Fab and m-iodohippuric acid), whereas additional radiometabolites were observed with [125I]HML-Fab. This suggested that metabolism of both HML-conjugated Fab fragments would occur in the membrane fractions of the renal cells. The findings of this study reinforced our previous hypothesis that radiochemical design of antibody fragments that liberate radiometabolites that are excreted into the urine by the action of brush border enzymes would constitute a useful strategy to reduce renal radioactivity levels from early postinjection times. 相似文献
17.
Hamelin M Borot-Laloi C Friguet B Bakala H 《Archives of biochemistry and biophysics》2003,411(2):215-222
Accumulation of carboxymethylated proteins (CML-proteins) is taken as a biomarker of glycoxidative stress which is thought to contribute to the age-related impairment in tissue and cell function. To investigate the occurrence and extent of glycoxidative damage with aging in rat kidney, serum and urine, we have prepared a polyclonal antibody against CML-modified bovine serum albumin. We subsequently used it for immunolocalization and in enzyme-linked immunosorbent assays to evaluate CML-protein content. In the serum, CML-protein level was 1.43+/-0.14 pmol CML/micrograms protein at 3 months and significantly increased by 50% from 10 to 27 months (1.50+/-0.14 pmol CML/micrograms protein vs 2.27+/-0.26 pmol CML/micrograms protein), albumin and transferrin being the main modified proteins. In the urine, CML-protein level was 2.50+/-0.14 pmol CML/micrograms protein at 3 months and markedly increased from 10 months (2.99+/-0.24 pmol CML/micrograms protein) to 27 months (3.76+/-0.25 pmol CML/micrograms protein), with albumin as the main excreted modified protein. Immunolocalization of CML-proteins in kidney provided evidence for an age-dependent increased accumulation in extracellular matrices. Intense staining of the glomerular basement membrane (GBM), Bowman's capsule, and the tubular basement membrane was found. Additionally, the CML content for collagen from GBM was 195.85+/-28.95 pmol CML/microgrms OHPro at 3 months and significantly increased from 10 months (187.61+/-21.99 pmol CML/micrograms OHPro) to 27 months (334.55+/-62.21 pmol CML/micrograms OHPro). These data show that circulating CML-protein level in serum and urine and CML accumulation in nephron extracellular matrices with aging are increasing in parallel. The CML-protein measurement in serum and urine may thus be used as an index for the assessment of age-associated glycoxidative kidney damage. 相似文献
18.
Cloning of Schistosoma japonicum 14-3-3 epsilon (Sj14-3-3 epsilon), a new member of the 14-3-3 family of proteins from schistosomes 总被引:4,自引:0,他引:4
A new member of the 14-3-3 protein family from Schistosoma japonicum has been identified. Phylogenetic analysis showed that this member belongs to the epsilon subfamily of the 14-3-3 proteins, and it is therefore named Sj14-3-3 epsilon. Consistent with the findings for the previously reported S. japonicum 14-3-3 protein (Sj14-3-3), Southern analysis suggested the presence of more than one gene, and/or introns or allelic polymorphism in this epsilon isoform. By RT-PCR, Sj14-3-3 epsilon was shown to be stage-specifically transcribed, being abundant in adults, present in sporocysts but absent in cercariae. Furthermore, mRNA of the epsilon isoform seemed to be much less abundant in the sporocyst stage, compared with Sj14-3-3. This suggests varying requirements of the different 14-3-3 isoforms at different stages of the life cycle. 相似文献
19.
N(epsilon)-acetylation of lysine (1) is a reversible post-translational modification with a regulatory role that rivals that of phosphorylation in eukaryotes. No general methods exist to synthesize proteins containing N(epsilon)-acetyllysine (2) at defined sites. Here we demonstrate the site-specific incorporation of N(epsilon)-acetyllysine in recombinant proteins produced in Escherichia coli via the evolution of an orthogonal N(epsilon)-acetyllysyl-tRNA synthetase/tRNA(CUA) pair. This strategy should find wide applications in defining the cellular role of this modification. 相似文献
20.
N(2)-(1-Carboxyethyl)deoxyguanosine, a nonenzymatic glycation adduct of DNA, induces single-strand breaks and increases mutation frequencies. 总被引:2,自引:0,他引:2
M Pischetsrieder W Seidel G Münch R Schinzel 《Biochemical and biophysical research communications》1999,264(2):544-549
N(2)-(1-Carboxyethyl)deoxyguanosine (CEdG) is a major nonenzymatic glycation product of DNA. The effect of CEdG modification, which was specifically prepared by incubation with dihydroxyacetone, on plasmid DNA topology was evaluated by gel electrophoresis. A time-dependent decrease of supercoiled plasmid-DNA was observed in parallel to the increase of CEdG adducts; the half-life time of the supercoiled plasmid-DNA was estimated to be approximately 16-18 h. CEdG-modified plasmid DNA showed a 25-fold reduced transformation efficiency. When modified DNA was used to transform Escherichia coli cells, a 6-fold increase in mutation frequency was determined by measuring loss of alpha-complementation. For the mutator strain BMH71-18mutS, an 8-fold increase in mutation frequency was observed. Although the exact mechanism of DNA damage is unclear, the occurrence of spontaneous depurination is likely. These findings suggest that a defined DNA glycation reaction can lead to DNA damage in vivo. 相似文献