首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe — hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets.  相似文献   

2.
早期地球的环境变化和生命的化学进化   总被引:4,自引:0,他引:4  
生命起源是当代最大的科学疑谜之一,也是历来人类普遍关注的一个焦点。在地球上最早的生物出现之前,有机物经历了漫长而复杂的化学进化过程,称为生命的化学进化。地球上生命的化学进化与非生物部分的早期演化过程,是密切地相互关联、相互作用并相互制约的。文章着重阐述与生命的化学关系最为密切的冥古宙和太古宙的地球演化历史,指出这两个阶段所形成的还原性原始大气和古海洋条件在生命的化学进行中起了极其重要的作用,并且从宇宙形成、太阳系演化和地球环境早期演化的角度,探讨地球生命的化学进化历程;以地球形成初期发生了一系列复杂的有机化学反应过程,由无机分子生成生物小分子,再进一步生成生物大分子,直至最后产生原始细胞。此外,文章评述当前国际上最流行的生命化学进化学说,对早期地球的化学进化是发生在地球表面的原始海洋、粘土矿物、火山喷发等,或是来源于地球之外的宇宙空间进行了综合的阐述。  相似文献   

3.
Research on trace elements in chemical evolution is reviewed from three points of view. They are:(i) the origin of the essentiality of trace elements in present biological systems; (ii) the possible roles of trace elements in chemical evolution; and (iii) the origin of enzymatic activity with metal ions,i.e., the origin of metalloenzymes.  相似文献   

4.
Addition of Tween 85 to aqueous suspensions of Anabaena variabilis induced photosynthetic evolution of hydrogen over a time span of several weeks: As much as 148 nmol H(2)/h . mg dry weight was produced in the first week by a suspension containing 4.2 mg dry weight of cells and 77 mM Tween 85. The chemical structure of Tween 85 was a necessary prerequisite for inducing hydrogen production, as compounds such as Tween 20, 60, and 80 had a quite different effect. There was a coupling between photosynthetic oxygen evolution and hydrogen evolution: Hydrogen evolution started to be effective only when oxygen evolution subdued. The presence of heterocysts in A. variabilis was also required for the Tween-induced hydrogen production. Based on these observations, possible mechanisms for the photosynthetic effect of Tween 85 are advanced and discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The problem of the origin of life understandably counts as one of the most exciting questions in the natural sciences, but in spite of almost endless speculation on this subject, it is still far from its final solution. The complexity of the functional correlation between recent nucleic acids and proteins can e.g. give rise to the assumption that the genetic code (and life) could not originate on the Earth. It was Portelli (1975) who published the hypothesis that the genetic code could not originate during the history of the Earth. In his opinion the recent genetic code represents the informational message transmitted by living systems of the previous cycle of the Universe. Here however, we defend the existence of a certain strategy in the syntheses of the genetic code during the history of the Earth. The strategy of correlation between amino acid and nucleotide polymers made an increasing velocity of the chemical evolution possible, that is, it increased the velocity of formation of the genetic code. Thus, life with the recent genetic code could originate on the Earth within the present cycle of the Universe.Present address: Institute for Pharmacy and Biochemistry, 533 51 Pardubice, Czechoslovakia.  相似文献   

6.
Photosynthesis, as a fundamental element in the life process, is integrated in the evolution of living systems on the basis of hydrogen cycles on various hierarchic levels. Conversion of radiant energy enables the oxidation of water, whereby free oxygen accumulates in the atmosphere. Hydrogen is (reversibly) stored in organic materials formed under reductive CO2-fixation and by the incorporation of the other elements, which are necessary for living systems. All endergonic processes in living cells are finally driven by the energy released through the clean recombination of protons and electrons with oxygen to water. Duration of the stored energy and the complexity of the systems thus produced is correlated negatively with the conversion efficiency of the radiation energy. Entropy is a unifying principle in the evolution of living systems, inclusive human societies.  相似文献   

7.
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The ‘modern synthesis’ of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories taken by life on Earth. From a cosmic perspective—what is the probability of life elsewhere in the Universe, and what are its probable traits?—a gene-based view of evolution says almost nothing. Irresistible geological and environmental changes affected eukaryotes and prokaryotes in very different ways, ones that do not relate to specific genes or niches. Questions such as the early emergence of life, the morphological and genomic constraints on prokaryotes, the singular origin of eukaryotes, and the unique and perplexing traits shared by all eukaryotes but not found in any prokaryote, are instead illuminated by bioenergetics. If nothing in biology makes sense except in the light of evolution, nothing in evolution makes sense except in the light of energetics. This Special Issue of Philosophical Transactions examines the interplay between energy transduction and genome function in the major transitions of evolution, with implications ranging from planetary habitability to human health. We hope that these papers will contribute to a new evolutionary synthesis of energetics and genetics.  相似文献   

8.
生命起源开始于从化学进化进入生物进化.然而,在原始细胞出现之前,已存在一个有蛋白质、核酸等生命要素的过渡期.那么,生命起源的历程究竞从何处开始?对这个未解之迹,进行了讨论.首先,从化学进化到生物进化要实现3个相变,即:从随机的有机化学反应相变为定向代谢途径;从消旋体环境相变为生物手性环境:从化学混沌状态相变为生命耗散结构.通过比较分析发现,由于前生命化学时期出现了丙酮酸.它的独特性质导致了这3种相变同步发生,其中起驱动作用的是定向代谢途径.它起源于以丙酮酸为基质的逆向糖酵解(糖生成途径).  相似文献   

9.
A rule-based programming paradigm is described as a formal basis for biological, chemical and physical computations. In this paradigm, the computations are interpreted as the outcome arising out of interaction of elements in an object space. The interactions can create new elements (or same elements with modified attributes) or annihilate old elements according to specific rules. Since the interaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward an equilibrium or unstable or chaotic state. Such an evolution may retain certain invariant properties of the attributes of the elements. The object space resembles Gibbsian ensemble that corresponds to a distribution of points in the space of positions and momenta (called phase space). It permits the introduction of probabilities in rule applications. As each element of the ensemble changes over time, its phase point is carried into a new phase point. The evolution of this probability cloud in phase space corresponds to a distributed probabilistic computation. Thus, this paradigm can handle tor deterministic exact computation when the initial conditions are exactly specified and the trajectory of evolution is deterministic. Also, it can handle probabilistic mode of computation if we want to derive macroscopic or bulk properties of matter. We also explain how to support this rule-based paradigm using relational-database like query processing and transactions.  相似文献   

10.
A conference on Life in the Universe, organized by the Council of Europe, and held in Paris, November 19 to 21, 1979, brought together more than 100 scientists from different fields. The aim of this conference was to promote scientific cooperation in Europe, in conjunction with other countries, in fields related to the problem of Life in the Universe. Our knowledge concerning this problem was reviewed in three different sessions. The first session was devoted to the question of planetary evolution; the second session was devoted to the question of the origin and evolution of life, and the third session was devoted to the problem of evolution of intelligence and the search for extraterrestrial intelligence. The Drake formula was the keynote of the conference. Each session tried to estimate some of the parameters of this formula, in order to examine the question: how many extraterrestrial civilizations with a level of technology at least equal to ours may be present in the universe? Even if no definite answer is given to this question, this meeting pointed out the need for more research.  相似文献   

11.
Hydrogen cyanide polymers form spontaneously from HCN and traces of base catalysts. It is probable that these polymers played an important role in the early stages of chemical evolution. Nevertheless, their full structural characterization has still not been accomplished. A number of mass spectrometric methods have now been applied to this structural problem including FAB-MS, thermal desorption EI-MS, ESI-MS, APCI-MS and off-line TMAH thermochemolysis/GC-MS. This latter method causes bond cleavage and in situ methylation producing a suite of products which provides valuable insight into the substructural features of HCN polymers and also promises to serve as a sensitive diagnostic tool for detecting the presence of HCN polymers in samples from diverse sources.  相似文献   

12.
植物与昆虫之间的关系一直被人们作为重要的研究目标。昆虫依靠绿色植物生存,植物通过自身的化学物质影响昆虫的进化方向,两者形成了复杂的协同进化关系。本文阐述了昆虫在定居、产卵、取食过程中运用不同的嗅觉、味觉、触觉刺激标准来选择适宜的寄主或寄主位置的方法,以及植物体内的化学成分对昆虫的营养作用和通过毒杀、拒食、招引天敌寄生蜂等方式抵御昆虫的进攻。  相似文献   

13.
The goal of NASA's Exobiology Progam is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETT).  相似文献   

14.
Hydrogen evolution by a nitrogen-fixing cyanobacterium, Anabaena sp. strain N-7363, was tested in order to develop a water biophotolysis system under aerobic conditions. A culture of the strain supplemented with carbon dioxide under an air atmosphere evolved hydrogen and oxygen gas, which reached final concentrations of 9.7 and 69.8%, respectively, after 12 days of incubation. Hydrogen uptake activity was not observed during incubation, and nitrogenase was thought to be the sole enzyme responsible for the hydrogen evolution.  相似文献   

15.
The work is devoted to the historical development of physics and biology. Various aspects of their interactions are shown: antagonism, mutual penetration and a lot of bridges, built or being built between them. The gradual "evolution of the world picture" from going away of the "pre-scientific" animated Universe and the appearance of mechanicism and vitalism to the development of systems and field approaches is traced. The last part of the paper is concerned with some present-day works at the joint between physics and biology.  相似文献   

16.
Hydrogen peroxide evolution during V-UV photolysis of water.   总被引:1,自引:0,他引:1  
Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.  相似文献   

17.
Summary Hydrogenase and nitrogenase activities of sulfate-reducing bacteria allow their adaptation to different nutritional habits even under adverse conditions. These exceptional capabilities of adaptation are important factors in the understanding of their predominant role in problems related to anaerobic metal corrosion. Although the D2–H+ exchange reaction indicated thatDesulfovibrio desulfuricans strain Berre-Sol andDesulfovibrio gigas hydrogenases were reversible, the predominant activity in vivo was hydrogen uptake. Hydrogen production was restricted to some particular conditions such as sulfate or nitrogen starvation. Under diazotrophic conditions, a transient hydrogen evolution was followed by uptake when dinitrogen was effectively fixed. In contrast, hydrogen evolution proceeded when acetylene was substituted as the nitrogenase substrate. Hydrogen can thus serve as an electron donor in sulfate reduction and nitrogen metabolism.  相似文献   

18.
Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups).  相似文献   

19.
In the past, biologists believed that species were stable and permanent entities and they viewed them as natural kinds which, like the chemical elements, exist in nature independently of any human conceptualization. After Darwin, biologists came to accept that species were the products of evolution and natural selection and were not immutable natural kinds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号