首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrillarin and plant nucleolin homologue NopA64 are two important nucleolar proteins involved in pre-rRNA processing. To understand better the effects of the altered gravity environment on the nucleolus functioning we have investigated the location of fibrillarin and NopA64 in nucleolar subcomponents of cress (Lepidium sativum L.) root meristematic cells grown under simulated microgravity that was compared to the control cells grown in normal conditions at I g. Cress fibrillarin was first shown to have the molecular weight 41 kDa. Both fibrillarin and NopA64 in the cress cell nucleolus are located in the zones known to contain processing pre-rRNA molecules as it has been previously reported in other species. The data confirm participation of these proteins in processomes--RNP complex particles involved in pre-rRNA processing. Under altered gravity a decrease in the quantity of both fibrillarin and NopA64 in the transition zone between fibrillar centres and the dense fibrillar component was observed, compared to control, which could point out to a lowering of the level of early pre-rRNA processing in these experimental conditions. This decrease was also detected in the bulk of the dense fibrillar component. These data support the idea that altered (reduced) gravity results in lowering the level of functional activity of the nucleolus.  相似文献   

2.
The aim of the present investigation was to describe the basic cell biology of the postfertilization activation of rRNA genes using in vitro-produced bovine embryos as a model. We used immunofluorescence confocal laser scanning microscopy and transmission electron microscopy to study nucleolar development in the nuclei of embryos up to the fifth postfertilization cell cycle. During the first cell cycle (1-cell stage), fibrillarin, upstream binding factor (UBF), nucleolin (C23), and RNA polymerase I were localized to distinct foci in the pronuclei, and, ultrastructurally, compact spherical fibrillar masses were the most prominent pronuclear finding. During the second cell cycle (2-cell stage), the findings were similar except for a lack of nucleolin and RNA polymerase I labeling. During the third cell cycle (4-cell stage), fibrillarin, UBF, nucleophosmin, and nucleolin were localized to distinct foci. Ultrastructurally, spherical fibrillar masses that developed a central vacuole over the course of the cell cycle were observed. Early in the fourth cell cycle (8-cell stage), fibrillarin, nucleophosmin, and nucleolin were localized to small bodies that with time developed a central vacuole. UBF and topoisomerase I were localized to clusters of small foci. Ultrastructurally, spherical fibrillar masses with a large eccentric vacuole and later small peripheral vacuoles were seen. Late in the fourth cell cycle, nucleophosmin and nucleolin were localized to large shell-like bodies; and fibrillarin, UBF, topoisomerase I, and RNA polymerase I were localized to clusters of small foci. Ultrastructurally, a presumptive dense fibrillar component (DFC) and fibrillar centers (FCs) were observed peripherally in the vacuolated spherical fibrillar masses. Subsequently, the presumptive granular component (GC) gradually became embedded in the substance of this entity, resulting in the formation of a fibrillo-granular nucleolus. During the fifth cell cycle (16-cell stage), a spherical fibrillo-granular nucleolus developed from the start of the cell cycle. In conclusion, the nucleolar protein compartment in in vitro-produced preimplantation bovine embryos is assembled over several cell cycles. In particular, RNA polymerase I and topoisomerase I are detected for the first time late during the fourth embryonic cell cycle, which coincides with the first recognition of the DFC, FCs, and GC at the ultrastructural level.  相似文献   

3.
Summary. Fibrillarin and the plant nucleolin homolog NopA64 are two important nucleolar proteins involved in pre-rRNA processing. In order to determine the effects of the altered gravity environment on the nucleolus, we have investigated the location of fibrillarin and NopA64 in nucleolar subcomponents of cress (Lepidium sativum L.) root meristematic cells grown under clinorotation, which reproduces an important feature of microgravity, namely, the absence of the orienting action of a gravity vector, and compared it to the location in control cells grown in normal 1 g conditions. Prior to these experiments, we report here the characterization of cress fibrillarin as a 41 kDa protein which can be isolated from meristematic cells in three nuclear fractions, namely, the soluble ribonucleoprotein fraction, the chromatin fraction, and the nuclear-matrix fraction. Furthermore, as reported for other species, the location of both fibrillarin and NopA64 in the cress cell nucleolus was in zones known to contain complex ribonucleoprotein particles involved in early pre-rRNA processing, i.e., processomes. Under altered gravity, a decrease in the quantity of both fibrillarin and NopA64 compared to controls was observed in the transition zone between fibrillar centers and the dense fibrillar component, as well as in the bulk of the dense fibrillar component. These data suggest that altered (reduced) gravity results in a lowered level of functional activity in the nucleolus. Correspondence and reprints: Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain.  相似文献   

4.
5.
6.
7.
For the purpose of gaining knowledge of the relationships between cell proliferation and ribosome biogenesis, as two fundamental mutually interconnected cellular processes, studies were performed on cell populations synchronized in their cell-cycle progression by treatment with hydroxyurea, followed by sampling at different times after its removal. A structural rearrangement of the nucleolus was observed throughout the interphase, along with changes in the relative amounts of different nucleolar subcomponents. A structural model of nucleolar organization was associated with each interphase period. Throughout interphase, the nucleolin-like protein, NopA100, was immunodetected in the dense fibrillar component of the nucleolus, preferentially near fibrillar centers and its levels were shown to increase from G1 to G2. A western blotting analysis of soluble nuclear protein extracts with anti-NopA100 antibody resulted in the intense labeling of a 100-kDa band, but also of a series of proteins related to it, suggesting that NopA100 undergoes a physiological process of proteolytic maturation, similar to that described for mammalian nucleolin, but not reported in other biological model systems. Physiological proteolysis of NopA100, related to cell-cycle progression, was confirmed after the nuclei extracted from synchronized cells were treated with the protease inhibitor, leupeptin, which resulted in an increase of the 100-kDa band at the expenses of the decrease of some other bands, according to the cell-cycle stages. We therefore conclude that there is a relationship between the increase in nucleolar activity, cell-cycle progression, nucleolar structure, the activity of NopA100, and the proteolysis of this nucleolin-like protein.  相似文献   

8.
9.
The nucleolus is the site of ribosome biosynthesis, but is now known to have other functions as well. In the present study we have investigated how the distribution of signal recognition particle (SRP) RNA within the nucleolus relates to the known sites of ribosomal RNA synthesis, processing, and nascent ribosome assembly (i.e., the fibrillar centers, the dense fibrillar component (DFC), and the granular component). Very little SRP RNA was detected in fibrillar centers or the DFC of the nucleolus, as defined by the RNA polymerase I-specific upstream binding factor and the protein fibrillarin, respectively. Some SRP RNA was present in the granular component, as marked by the protein B23, indicating a possible interaction with ribosomal subunits at a later stage of maturation. However, a substantial portion of SRP RNA was also detected in regions of the nucleolus where neither B23, UBF, or fibrillarin were concentrated. Dual probe in situ hybridization experiments confirmed that a significant fraction of nucleolar SRP RNA was not spatially coincident with 28S ribosomal RNA. These results demonstrate that SRP RNA concentrates in an intranucleolar location other than the classical stations of ribosome biosynthesis, suggesting that there may be nucleolar regions that are specialized for other functions.  相似文献   

10.
11.
12.
The nucleolar protein fibrillarin has been studied in onion cells; it is detected as an Mr 37,000 protein by immunoblotting using a human autoimmune serum. Quantitative immunoelectron microscopy showed that most fibrillarin is localized in the transition zone between the fibrillar center (FC) and the dense fibrillar component (DFC) as well as in the priximal zone of the DFC, where the labeling shows a gradual decrease out-ward until it reaches insignificant levels in the distal zone of the DFC. Thus, fibrillarin is not uniformly distributed throughout the DFC of plant cells. This result supports the hypothesis that the morphologically homogeneous DFC may not be uniform in function; it is also in agreement with the hypothesized vectorial flow of ribosome biogenesis through the same compartments. Data are also presented showing that the amount of fibrillarin increase when nucleolar activity increases in G2, and probably decreases when nucleolar activity decreases during differentiation.  相似文献   

13.
14.
The immunoelectron microscopy detection of RNA using anti-RNA monoclonal antibodies has been performed for the first time over different plant cells. The use of the methylation-acetylation (MA) method permits clear distinction among the nuclear and nucleolar compartments and can be combined with the immunogold approach. Cytochemical methods for nucleic acids were performed together with the immunoassays, providing additional data about the different composition of the various nucleolar components. Anti-RNA antibodies highly labeled the ribosome-rich areas of the cytoplasm and the nucleolus. The interchromatin region also is labeled. The labeling was intense in the granular component, lower in the dense fibrillar component, and very scarce in the fibrillar centers. The MA method made possible the statistical evaluation of the labeling density in the various nuclear compartments by permitting the clear assignment of the particles to precise nuclear structures.  相似文献   

15.
16.
17.
Fibrillarin: a new protein of the nucleolus identified by autoimmune sera   总被引:40,自引:0,他引:40  
Autoimmune serum from a patient with scleroderma was shown by indirect immunofluorescence to label nucleoli in a variety of cells tested including: rat kangaroo PtK2, Xenopus A6, 3T3, HeLa, and human peripheral blood lymphocytes. Immunoblot analysis of nucleolar proteins with the scleroderma antibody resulted in the labeling of a single protein band of 34 kD molecular weight with a pI of 8.5. Electron microscopic immunocytochemistry demonstrated that the protein recognized by the scleroderma antiserum was localized exclusively in the fibrillar region of the nucleolus which included both dense fibrillar and fibrillar center regions. Therefore, we have named this protein "fibrillarin". Fibrillarin was found on putative chromosomal nucleolar organizer regions (NORs) in metaphase and anaphase, and during telophase fibrillarin was found to be an early marker for the site of formation of the newly forming nucleolus. Double label indirect immunofluorescence and immunoelectron microscopy on normal, actinomycin D-segregated, and DRB-treated nucleoli showed that fibrillarin and nucleolar protein B23 were predominantly localized to the fibrillar and granular regions of the nucleolus, respectively. RNase A and DNase I digestion of cells in situ demonstrated that fibrillarin was partially removed by RNase and completely removed by DNase. These results suggest that fibrillarin is a widely occurring basic nonhistone nucleolar protein whose location and nuclease sensitivity may indicate some structural and/or functional role in the rDNA-containing dense fibrillar and fibrillar center regions of the nucleolus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号