首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influx of calcium in platelets and red cells produces formation of vesicles shed from the plasma membrane. The time course of the shedding process closely correlates with the ability of both cells to stimulate prothrombinase activity when used as a source of phospholipid in the prothrombinase assay. This reflects increased surface exposure of phosphatidylserine, presumably resulting from a loss in membrane asymmetry. Evidence is presented that the shed vesicles have a random phospholipid distribution, while the remnant cells show a progressive loss of membrane phospholipid asymmetry when more shedding occurs. Removal of intracellular calcium produces a decrease of procoagulant activity of the remnant cells but not of that of the shed vesicles. This is consistent with reactivation of aminophospholipid translocase activity, being first inhibited by intracellular calcium and subsequently reactivated upon calcium removal. Involvement of aminophospholipid translocase is further supported by the observation that reversibility of procoagulant activity is also dependent on metabolic ATP and reduced sulfhydryl groups. The finding that this reversibility process is not apparent in shed vesicles may be ascribed to the absence of translocase or to a lack of ATP. These data support and extend the suggestion made by Sims et al. [1989) J. Biol. Chem. 264, 17049-17057) that membrane fusion, which is required for shedding to occur, produces transient flip-flop sites for membrane phospholipids. Furthermore, the present results indicate that scrambling of membrane phospholipids can only occur provided that aminophospholipid translocase is inactive.  相似文献   

2.
Apoptosis and erythrocyte senescence share the common feature of exposure of phosphatidylserine (PS) in the outer leaflet of the cells. Western analysis showed that mature red cells contain Fas, FasL, Fas-associated death domain (FADD), caspase 8, and caspase 3. Circulating, aged cells showed colocalization of Fas with the raft marker proteins Galpha(s) and CD59; the existence of Fas-associated FasL, FADD and caspase 8; and caspase 8 and caspase 3 activity. Aged red cells had significantly lower aminophospholipid translocase activity and higher levels of PS externalization in comparison with young cells. In support of our contention that caspases play a functional role in the mature red cell, the oxidatively stressed red cell recapitulated apoptotic events, including translocation of Fas into rafts, formation of a Fas-associated complex, and activation of caspases 8 and 3. These events were independent of calpain but dependent on reactive oxygen species (ROS) as evident from the effects of the ROS scavenger N-acetylcysteine. Caspase activation was associated with loss of aminophospholipid translocase activity and with PS externalization. ROS was not generated by treatment of cells with t-butyl hydroperoxide at 10 degrees C, and Fas did not translocate into rafts. Concomitantly, neither formation of a Fas-associated signaling complex nor caspase activation could be observed, supporting the view that translocation of Fas into rafts was the trigger for the chain of events leading to caspase 3 activation. Our data demonstrate for the first time the novel involvement of Fas/caspase 8/caspase 3-dependent signaling in an enucleated cell leading to PS externalization, a central feature of erythrophagocytosis and erythrocyte biology.  相似文献   

3.
Overexpression of Bcl-2 protein occurs via both t(14;18)-dependent and independent mechanisms and contributes to the survival and chemoresistance of non-Hodgkin lymphomas. HA14–1 is a nonpeptidic organic small molecule, which has been shown to inhibit the interaction of Bcl-2 with Bax, thereby interfering with the antiapoptotic function of Bcl-2. In this study, we sought to determine the in vitro efficacy of HA14–1 as a therapeutic agent for non-Hodgkin lymphomas expressing Bcl-2. Assessment of cell viability demonstrated that HA14–1 induced a dose- (IC50 = 10 μM) and time-dependent growth inhibition of a cell line (SudHL-4) derived from a t(14;18)-positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1 effectively induced apoptosis via a caspase 3-mediated pathway but did not affect either the p38 MAPK or p44/42 MAPK pathways. Western blot analyses of Bcl-2 family proteins and other cell cycle-associated proteins were performed to determine the molecular sequelae of HA14–1-induced apoptosis. The results show down-regulation of Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2 proteins, without change in Bax levels during HA14–1-mediated apoptosis. Our findings further elucidate the cellular mechanisms accompanying Bcl-2 inhibition and demonstrate the potential of Bcl-2 inhibitors as therapeutic agents for the treatment of non-Hodgkin lymphomas.  相似文献   

4.
5.
6.
The EGF-like family of growth factors are known to be involved in the control of the intestinal epithelium. The intracellular events are mediated by the EGF receptor (EGFr), a transmembrane glycoprotein which is overexpressed in many malignancies and also in many radiosensitive cell types. The precise mode of action of the receptor in controlling proliferation and whether the factor is also involved in controlling apoptosis in this tissue is not clear. Using polyclonal antibodies raised against a cytoplasmic region of the receptor distant to the phosphorylation site and one raised against the peptide sequence DVVDADEYLIPQ, which is present in the cytoplasmic tail phosphorylation site of the EGFr, we have examined the immunostaining in normal and irradiated murine intestine. The former antibody labelled the basolateral membranes of the epithelial cells in the proliferative zones of both the small intestine and colon, in both control and irradiated tissue. The latter antibody however, strongly labelled the Goblet cells and the microvilli of the enterocyte apical membrane in control tissue. Following irradiation\ the apical labelling redistributed and was localized in the apical cytoplasm and in a paranuclear region. Furthermore, strong labelling was now seen in many of the apoptotic cells of the small intestinal epithelium. The greatly differing results with the two antibodies indicates that interpretation of such immunostaining must be viewed with caution and may relate to the availability of each particular epitope. These results also suggest that antibodies to DVVDADEYLIPQ may be a useful marker of apoptotic calls and could imply a correlation between high levels of epitope availability, the radiosensitive (frequently p53 expressing) cells of the crypt epithelium and the induction of apoptosis.This work was supported by the Cancer Research Campaign.  相似文献   

7.
During apoptotic and excitotoxic neuron death, challenged mitochondria release the pro-apoptotic factor cytochrome c. In the cytosol, cytochrome c is capable of binding to the apoptotic protease-activating factor-1 (APAF-1). This complex activates procaspase-9 in the presence of dATP, resulting in caspase-mediated execution of apoptotic neuron death. Many forms of Ca(2+)-mediated neuron death, however, do not lead to prominent activation of the caspase cascade despite significant release of cytochrome c from mitochondria. We demonstrate that elevation of cytosolic Ca(2+) induced prominent degradation of APAF-1 in human SH-SY5Y neuroblastoma cells and in a neuronal cell-free apoptosis system. Loss of APAF-1 correlated with a reduced ability of cytochrome c to activate caspase-3-like proteases. Ca(2+) induced the activation of calpains, monitored by the cleavage of full-length alpha-spectrin into a calpain-specific 150-kDa breakdown product. However, pharmacological inhibition of calpain activity indicated that APAF-1 degradation also occurred via calpain-independent pathways. Our data suggest that Ca(2+) inhibits caspase activation during Ca(2+)-mediated neuron death by triggering the degradation of the cytochrome c-binding protein APAF-1.  相似文献   

8.
9.
《Free radical research》2013,47(11-12):1307-1324
Abstract

Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC50 of approximately 80–100 and 40–60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

10.
Fan S  Li L  Chen S  Yu Y  Qi M  Tashiro S  Onodera S  Ikejima T 《Free radical research》2011,45(11-12):1307-1324
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

11.
Structure-activity relationship (SAR) studies of novel 5-alkyl and 5-aryl/heteroaryl substituted 1,2,4-triazoles are described. The in vitro activity is compared to the pyrazole class of compounds with analogous side chains to delineate the contribution of the triazole ring nitrogen in binding to the active site. Both series are quite potent and selective in the canine whole blood (CWB) COX-2 assay, suggesting the increased binding contribution of the hydrophobic side chains.  相似文献   

12.
A series of 2-(5-nitro-2-furyl) and 2-(5-nitro-2-thienyl)-5-substituted-1,3,4-thiadiazoles (5a-d and 6a-j) were synthesized and evaluated against Leishmania major promastigotes using (3)H-thymidine incorporation. Most of the compounds showed activity better than the reference drug sodium stibogluconate (Pentostam). The most active compound was 6c (IC(50)=0.1 microM).  相似文献   

13.
14.
The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasome is a multiprotein complex with a role in innate immune responses. NLRP3 inflammasome dysfunction is a common feature of chronic inflammatory diseases. Microglia activation is also associated with neuroinflammatory pathologies. We previously reported that 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) reduced hypoxia-induced toxicity by modulating inflammation. However, no studies have elucidated the precise mechanisms for the anti-inflammatory action of KHG26792, in particular via inflammasome mediation. This study investigated the effects of KHG26792 on the inflammasome-mediated signaling pathway in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. KHG26792 significantly attenuated several inflammatory responses including tumor necrosis factor-α, interleukin-1β, interleukin-6, reactive oxygen species, and mitochondrial potential in these cells. KHG26792 also suppressed LPS-induced increase NLRP3, activated caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) levels. Furthermore, KHG26792 successfully blocked LPS-activated adenosine triphosphate (ATP) level, likely through the purinergic receptor P2X ligand-gated ion channel 7 (P2X7) receptor. Our results suggest that the anti-inflammatory functions of KHG26792 may be, at least in part, due to regulation of the P2X7R/NLRP3-mediated signaling pathway during microglial activation.  相似文献   

15.
Alkylation of 2,4-bis-O-(trimethylsilyl)uracil with hexafluoroacetone trifluoroacetylimine gave 5-(2-trifluoroacelylaminohexafluoroprop-2-yl)uracil, which was transformed by alkaline hydrolysis to 5-(2-aminohexafluoroprop-2-yl)uracil. The latter was glycosytated with 2-deoxy-3,5-di-O-p-toluoyl-alpha-D-ribofyranosyl chloride by means of various modifications of the silyl method leading to the predominant formation of beta-deoxynucleoside; after deacylation 1-(2-deoxy-beta-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ura cil was obtained. Interaction of silylated 5-(2-trifluoroacetylaminohexafluoroprop-2-yl)uracil with acylgalogenose gave anomeric O-substitutet deoxynucleosides, which were deblocked to give 5-(2-trifluoroacetylaminohexafluoroprop-2-yl)-2'-deoxyuridine and corresponding alpha-anomer. Alkaline hydrolysis of N-trifluoroacetyl group in both individual anomers produced 1-(2-deoxy-alpha-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ur acil and the abovementioned beta-anomer. Of all compounds synthesised only 1-(2-deoxy-beta-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ura cil has a moderate inhibitory effect on replication of vaccinia virus in vitro.  相似文献   

16.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine 5'-triphosphate (BrVdUTP) and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil 5'-triphosphate (BrVarafUTP), which are known as specific inhibitors of herpes simplex viral (type 1 and 2) DNA polymerase, were found to be strong inhibitors of DNA polymerase gamma from human KB and murine myeloma cells. In fact BrVdUTP and BrVarafUTP were found to be stronger inhibitors of DNA polymerase gamma than of other DNA polymerases having viral (herpes simplex virus or retrovirus) origin or cellular (eukaryotic alpha and beta, or prokaryotic) origin. The mode of inhibition of DNA polymerase gamma by BrVdUTP and BrVarafUTP was competitive with respect to dTTP, the normal substrate. Whereas BrVdUTP was an efficient substrate for DNA polymerase gamma and other DNA polymerases that were examined, BrVarafUTP failed to serve as a substrate for DNA synthesis. Ki values for BrVdUTP (40 nM) and BrVarafUTP (7 nM) with DNA polymerase gamma, as determined with (rA)n.(dT) as the template.primer, were much smaller than the Km values for dTTP (0.16 microM and 0.71 microM for murine and human DNA polymerase gamma, respectively). Thus, the affinity of BrVdUTP or BrVarafUTP for DNA polymerase gamma was much stronger than that of dTTP.  相似文献   

17.
Serine/threonine phosphatase regulation of phosphorylation-mediated intracellular signaling controls a number of important processes in mammalian cells. In this study, we show that constitutively active protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase, is essential for T leukemia cell survival. Jurkat and CCRF-CEM T leukemia cells treated with the PP2A-selective inhibitor okadaic acid (OA) showed a dose- and time-dependent induction of apoptosis, as indicated by loss of mitochondrial transmembrane potential (delta psi(m)), cleavage-induced activation of caspase-3, -8, and -9, and DNA fragmentation. In addition, caspase-8 or caspase-9 inhibition with z-IETD-fmk or z-LEHD-fmk, respectively, largely prevented OA-induced apoptosis. Although OA treatment did not affect constitutive Bcl-2 expression, overexpression of Bcl-2 prevented both OA-induced DNA fragmentation and dissipation of delta psi(m). Furthermore, inhibition of caspase-3, -8, or -9 partially protected against OA-induced loss of delta psi(m). In addition, caspase-9 and caspase-3 inhibition largely prevented procaspase-3 and procaspase-8 cleavage, respectively, while caspase-8 inhibition partially interfered with procaspase-9 cleavage in OA-treated T leukemia cells. Thus, PP2A inhibition triggered the intrinsic pathway of apoptosis, which was enhanced by a mitochondrial feedback amplification loop. PP2A has also been implicated in the regulation of p38 mitogen-activated protein kinase (MAPK). Co-immunoprecipitation analysis revealed a physical association between the catalytic subunit of PP2A and p38 MAPK in T leukemia cells. Moreover, OA treatment caused p38 MAPK to be phosphorylated in a dose- and time-dependent fashion, indicating that PP2A prevented p38 MAPK activation. Although p38 MAPK activation usually promotes apoptosis, pharmacologic inhibition of p38 MAPK exacerbated OA-induced DNA fragmentation and loss of delta psi(m) in T leukemia cells, suggesting that, in this instance, the p38 MAPK signaling pathway promoted cell survival. Collectively, these findings indicate that PP2A and p38 MAPK have coordinate effects on signaling pathways that regulate the survival of T leukemia cells.  相似文献   

18.
beta 2-Glycoprotein I (beta 2 GPI) is known to influence macrophage uptake of particles with phosphatidylserine containing surfaces, as apoptotic thymocytes and unilamellar vesicles in vitro. Nevertheless, effects upon macrophage activation induced by this interaction are still unknown. beta 2 GPI influence upon the reactive species production by Kupffer cells was evaluated in order to investigate whether beta 2 GPI modulates the macrophage response to negatively charged surfaces. Chemiluminescence of isolated non-parenchymal rat liver cells was measured after phagocytosis of opsonized zymosan or phorbolymristate acetate (PMA) stimulation, in the presence and absence of large unilamellar vesicles (LUVs) containing 25 mol% phosphatidylserine (PS) or 50 mol% cardiolipin (CL) and complementary molar ratio of phosphatidylcholine (PC). beta 2 GPI decreased by 50% the chemiluminescence response induced by opsonized zymosan, with a 66% reduction of the initial light emission rate. PMA stimulated Kupffer cell chemiluminescence was insensitive to human or rat beta 2 GPI. Albumin (500 micrograms/ml) showed no effect upon chemiluminescence. beta 2 GPI increased PS/PC LUV uptake and degradation by Kupffer cells in a concentration-dependent manner, without leakage of the internal contents of the LUVs, as shown by fluorescence intensity enhancement. LUVs opsonized with antiphospholipid antibodies (aPL) from syphilitic patients increased light emission by Kupffer cells. Addition of beta 2 GPI to the assay reduced chemiluminescence due to opsonization with purified IgG antibodies from systemic lupus erythematosus (SLE or syphilis (Sy) patient sera. A marked net increase in chemiluminescence is observed in the presence of Sy aPL antibodies, whereas a decrease was found when SLE aPL were added to the assay, in the presence or absence of beta 2 GPI. At a concentration of 125 micrograms/ml, beta 2 GPI significantly reduced Kupffer cell Candida albicans phagocytosis index and killing score by 50 and 10%, respectively. The present data strongly suggest that particle uptake in the presence of beta 2 GPI is coupled to an inhibition of reactive species production by liver macrophages during the respiratory burst, supporting the role of beta 2 GPI as a mediator of senescent cell removal.  相似文献   

19.
The title compound is a photoaffinity labeling reagent for thymidylate synthetase, a key enzyme for the denovo biosynthesis of DNA. This compound is also a light-dependent inhibitor of murine (L-1210) and human (Namalva, Raji) tumor cell growth, and vaccinia virus replication.  相似文献   

20.
The in vivo clastogenicity of 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2) was examined in the micronucleus test using peripheral blood from three mouse strains (ICR, CD-1, and MS/Ae) and bone marrow from one rat strain (Sprague-Dawley). Doses up to the maximum tolerated were tested. The chemical was given once, twice, thrice, or four times via either the i.p. or p.o. route. Under some conditions, ICR and CD-1 mice showed an increased frequency of micronucleated reticulocytes, but definite conclusions were difficult to draw because the increases were very slight. MS/Ae mice showed a markedly elevated micronucleated reticulocyte frequency after the double and triple ip treatments. Rats showed a slightly but statistically significantly increased frequency of micronucleated polychromatic erythrocytes after double i.p. treatments. These results indicate that AF-2 is a weak in vivo clastogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号