首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented which indicates that amino acid starvation is the specific stimulus initiating the developmental phase of the life cycle of Dictyostelium discoideum: (i) Amoebae were washed free of complex growth medium and placed in buffer supplemented with specific nutrients; amino acids were the only nutrients that specifically inhibited the initiation of development. (ii) A partially defined growth medium allowing selective starvation for amino acids or glucose during growth is described. Amoebae initiated development only when starved for amino acids. Any effect of glucose on the primary control of the initiation of development is an indirect result of its utilization as a source of precursors for endogenously synthesized amino acids.  相似文献   

2.
Regulation of T4-specific mRNA synthesis was studied during leucine starvation of a leucine-requiring stringent Escherichia coli B strain. This was done by imposing starvation prior to T4 infection and then letting RNA synthesis proceed for different time periods. Rifampin or streptolydigin was added to stop further RNA synthesis, and protein synthesis was restored by addition of leucine. Samples were withdrawn at different times, and the enzyme-forming capacities found that, during conditions which elicit the stringent response in uninfected bacteria, immediate early mRNA is not stringently regulated. This conclusion contradicts the earlier conclusion of others, obtained by measuring incorporation of radioactive uracil; this is explained by the observation of Edlin and Neuhard (1967), confirmed and extended by us to the T4-infected cell, that the incorporation of uracil into RNA of a stringent strain is virtually blocked by amino acid starvation, whereas that of adenine continues at 30 to 50% of the rate seen in the presence of the required amino acid.  相似文献   

3.
We show that removal of yeast extract and trypticase from growth medium is sufficient for induction of several key events which occur during the early stages of Dictyostelium differentiation: run-off of polysomes, the earliest known change in macromolecular metabolism; appearance of the cell surface cAMP receptor; and aggregation itself. Starvation of glucose has little effect on these parameters. These results are consistent with those of other investigators who showed that starvation only of amino acids will induce other activities associated with cAMP-mediated cell signaling and cell-cell adhesion. We show, in contrast, that other factors are involved in the increase in the relative rates of synthesis of three polypeptides very early in differentiation: actin, and two proteins (“45-min” proteins) which are synthesized only during the period of 45–90 min. The induction of synthesis of these three proteins and presumably, of their mRNAs, is not the result of starvation for glucose or amino acids but is the result of plating cells at high density. The increases in the synthesis of these proteins are dependent on the density at which cells are plated and do not occur at a density 75-fold lower than the density used in standard experiments. Cells growing at high density or near stationary phase do not show the induction of increased synthesis of actin or the “45-min” proteins. These experiments suggest that these early developmental changes may be dependent on a threshold level of a diffusible factor excreted early in development.  相似文献   

4.
5.
Summary A minimal medium was used to investigate the triggers regulating the initiation of solvent production and differentiation in Clostridium acetobutylicum P262. The accumulation of acid end-products caused the inhibition of cell division and the initiation of solvent production and cell differentiation. Initiation only occurred with a narrow pH range. Glucose or ammonium limited cultures failed to achieve the necessary threshold of acid end-products and solvent production and differentiation were not initiated. The addition of acid end-products or ammonium to cultures containing suboptimal levels of glucose or nitrogen respectively, enhanced solvent production. Resuspension of cells in media containing the threshold level of acid end-products and residual glucose induced endospore formation. Glucose or ammonium limitation did not induce sporulation and there was a requirement for glucose and ammonium during solventogenesis and endospore formation. Initiation of solvent production and clostridial stage formation were essential for sporulation. The induction of endospore formation in C. acetobutylicum P262 differs from that in the aerobic endospore forming bacteria where sporulation is initiated by nutrient starvation.  相似文献   

6.
7.
Electron microscopic analysis was used to study cells of Escherichia coli B and K-12 during and after amino acid starvation. The results confirmed our previous conclusion that cell division and initiation of DNA replication occur at a smaller cell volume after amino acid starvation. Although during short starvation periods, the number of constricting cells decreased due to residual division, it appears that during prolonged starvation, cells of E. coli B and K-12 were capable of initiating new constrictions. During amino acid starvation, cell diameter decreased significantly. The decrease was reversed only after two generation times after the resumption of protein synthesis and was larger in magnitude than that previously observed before division (F. J. Trueba and C. L. Woldringh, J. Bacteriol. 142:869-878, 1980). This decrease in cell diameter correlates with synchronization of cell division which has been shown to occur after amino acid starvation.  相似文献   

8.
9.
Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that occurs constitutively in cells, but can also be induced by stressors such as nutrient starvation or protein aggregation. Autophagy has been implicated in multiple disease mechanisms including neurodegeneration and cancer, with both tumor suppressive and oncogenic roles. Uncoordinated 51-like kinase 1 (ULK1) is a critical autophagy protein near the apex of the hierarchal regulatory pathway that receives signals from the master nutrient sensors MTOR and AMP-activated protein kinase (AMPK). In mammals, ULK1 has a close homolog, ULK2, although their functional distinctions have been unclear. Here, we show that ULK1 and ULK2 both function to support autophagy activation following nutrient starvation. Increased autophagy following amino acid or glucose starvation was disrupted only upon combined loss of ULK1 and ULK2 in mouse embryonic fibroblasts. Generation of PtdIns3P and recruitment of WIPI2 or ZFYVE1/DFCP1 to the phagophore following amino acid starvation was blocked by combined Ulk1/2 double knockout. Autophagy activation following glucose starvation did not involve recruitment of either WIPI1 or WIPI2 to forming autophagosomes. Consistent with a PtdIns3P-independent mechanism, glucose-dependent autophagy was resistant to wortmannin. Our findings support functional redundancy between ULK1 and ULK2 for nutrient-dependent activation of autophagy and furthermore highlight the differential pathways that respond to amino acid and glucose deprivation.  相似文献   

10.
Cultures of synchronized Streptococcus pneumoniae cells were prepared by amino acid starvation followed by refeeding, and the cellular reactivity towards the competence-activator for genetic transformation, i.e., competence induction on the addition of the activator, was investigated. Cyclical fluctuation in the level of competence was observed during the cell cycle. Especially, cells at division showed reduced cellular ability to develop competence. It was also observed that deprivation of nutritionally required amino acids had quite diiferent effects on the induction of competence, depending upon the amino acid removed: glutamine or serine starvation caused a significant reduction in the level of competence induced by the activator, whereas deprivation of other amino acids (histidine, leucine, isoleucine, valine, arginine and cysteine) did not.  相似文献   

11.
Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the Gram-negative bacterium Myxococcus xanthus . In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.  相似文献   

12.
Starvation triggers the differentiation of Dictyostelium discoideum amoebas to aggregation competence. To determine more precisely the nature of the starvation signal, the ability of various components of the growth medium to inhibit differentiation was examined. Changes in adenylate cyclase (the enzyme which generates the cAMP pulses basic to the differentiation process), various physiological and biochemical markers of developing cells, and the ability of amoebas to form specific intercellular contacts were monitored. We show that amino acid mixtures inhibit cell differentiation by preventing the increase of adenylate cyclase activity which normally occurs during the early hours of starvation. High concentrations of glucose also inhibit the differentiation process but at a later stage: The rise in adenylate cyclase still occurs when cells are starved in the presence of sugar, but the enzyme does not appear to function in vivo. Exogenously generated cAMP pulses are not able to bypass the block exerted by amino acids but can bypass the block exerted by glucose. Results support the hypothesis that the presence of amino acids inhibits adenylate cyclase synthesis, while the presence of 3% glucose blocks endogenous activation of adenylate cyclase, perhaps as a consequence of high osmotic pressure.  相似文献   

13.
Abstract. Myoblasts from 12-day chick embryos in cell culture transport the nonmetabolizable amino acid α-aminoisobutyric acid (AIB) two to three-fold more rapidly than multinucleated myotubes which form from them. This decrease in transport is due to a relative decrease in the number of transport sites per unit area of cell surface suggesting a compositional change in the plasma membrane during myogenesis. In studies reported here, AIB transport was monitored throughout myogenesis and correlated with other aspects of differentiation. During myogenesis the number of amino acid transport sites remains constant per myotube nucleus. As myogenesis proceeds, there is a marked increase in cellular protein and cell surface without a commensurate increase in amino acid transport sites. The net consequence of the surface area change is fewer amino acid transport sites per unit area of myotube membrane surface. The decrease in membrane transport sites for AIB per unit area of membrane is not a result of length of time in culture per se, medium depletion, or cell density, but is a result of differentiation, since blocking myoblast fusion by deprivation of calcium delays the decrease in AIB transport sites per unit cell surface area while reversal of the calcium deprivation block is accompanied by a rapid decrease in the number of AIB transport sites per unit cell surface area. Thus, the decrease in AIB transport sites is an aspect of differentiation which accompanies the marked elaboration of surface membrane during myogenesis.  相似文献   

14.
While the apoptotic and necrotic cell death pathways have been well studied, there lacks a comprehensive understanding of the molecular events involving autophagic cell death. We examined the potential roles of the apoptosis-linked caspase-3 and the necrosis/apoptosis-linked calpain-1 after autophagy induction under prolonged amino acid (AA) starvation conditions in PC-12 cells. Autophagy induction was observed as early as three hours following amino acid withdrawal. Cell death, measured by lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays occurred within 24 h following starvation and was accompanied by an upregulation in caspase-3 activity but not calpain-1. The cell death that occurred following AA starvation was significantly alleviated by treatment with the autophagy inhibitor 3-methyl adenine but not with the broad spectrum caspase inhibitors. Thus, this study demonstrates that 3-methyladenine-sensitive autophagic cell death due to AA starvation in PC-12 cells is mechanistically and biochemically similar to, yet distinct from, classic caspase dependent apoptosis. Shankar Sadasivan and Anu Waghray have contributed equally to this work.  相似文献   

15.
Mating type determination in Tetrahymena thermophila involves developmentally programmed, heritable alterations of the macronucleus, localized to the mtd locus. This determination can be predictably controlled by the environmental conditions during macronuclear development, eg, temperature and time of refeeding. In this article we have further characterized the effects of delayed refeeding on mating type determination, as revealed by the frequency of mating types among the progeny of a cross. Our results show that 1) the magnitude of this starvation effect decreases with temperature of conjugation and becomes undetectable at 18°C; 2) starvation during the interval 14 to 22 hr (after conjugation is induced at 30°C) is a necessary and sufficient condition for the induction of starvation effects; 3) relative mating type frequencies vary monotonically with nutrient concentration present during this critical period; and 4) sister macronuclei, developing under starvation conditions in the same cytoplasm, differentiate majority mating types characteristic of early or late refeeding; sister macronuclei show no apparent correlation with each other. On the basis of our observations on early and late refed cells, we propose that the composition of the newly developed macronucleus is the outcome of two key events: 1) mating type determination at the mtd locus and 2) differential molecular cloning of generally one or two autonomously replicating fragments (ARFs) of the macronuclear DNA bearing the mtd locus.  相似文献   

16.
A previously reported salt-sensitive binding of deoxyribonucleic acid (DNA) to the cell envelope in Escherichia coli, involving approximately one site per chromosome near the origin of DNA replication, is rapidly disrupted in vivo by rifampin or chloramphenicol treatment and by amino acid starvation. DNA replication still initiates with this origin-specific binding disrupted, even when the disruption extends over the period of obligatory protein and ribonucleic acid synthesis that must precede initiation after release of cells from amino acid starvation. Thus the origin-associated membrane-DNA interaction is not necessary either for the initiation event itself or for the maturation of a putative initiation apparatus in E. coli.  相似文献   

17.
18.
Regulation of Intracellular Proteolysis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
Individual nitrogenous metabolites have been examined as regulating agents for the breakdown of intracellular proteins in Escherichia coli. Generally, NH(4) (+) is the most effective regulator. Its depletion progressively increases the basal proteolytic rate to maximum in most strains when the doubling time is increased to 2 h. In E. coli 9723, the rate is further increased at longer doubling times. Amino acids have individual effects on intracellular proteolysis. The basal rate in amino acid-requiring auxotrophs of E. coli 9723 is stimulated weakly by starvation for histidine, tryptophan, or tyrosine, moderately by four other amino acid depletions, and more strongly by eight others. The degree of stimulation roughly correlates with the frequency of the amino acid in the cell proteins. Amino acid analogues that incorporate extensively into protein generally slightly inhibit intracellular proteolysis, except for selenomethionine, which is slightly stimulatory. Metabolic inhibitors were studied at graded concentrations. Chloramphenicol inhibits the basal level of intracellular proteolysis when protein synthesis is slightly or moderately inhibited, and stimulates proteolysis slightly at higher levels. Graded inhibition of ribonucleic acid synthesis with rifampin progressively stimulates intracellular proteolysis. Uracil depletion is also stimulatory. Inhibition of deoxyribonucleic acid synthesis with mitomycin C or by thymine starvation slightly inhibits intracellular proteolysis. Intracellular proteolysis is postulated to be regulated primarily by active ribosomal function. At 43 to 45 C, intracellular proteolysis becomes maximally induced and unresponsive to normal regulatory control by metabolites. Most regulation is directed towards the breakdown of the more stable cell proteins. Total proteolysis in all cell proteins is no more than doubled by the most effective conditions of starvation.  相似文献   

19.
Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that functions at a constitutive level in cells, which may become further activated by stressors such as nutrient starvation or protein aggregation. Autophagy has multiple beneficial roles for maintaining normal cellular homeostasis and these roles are related to the implications of autophagy in disease mechanisms including neurodegeneration and cancer. We previously searched for novel autophagy regulators and identified Rho-kinase 1 (ROCK1) as a candidate. Here, we show that activated ROCK1 inhibits autophagy in human embryonic kidney 293 cells. Conversely, ROCK inhibitory compounds enhanced the autophagy response to amino acid starvation or rapamycin treatment. Inhibition of ROCK during the starvation period led to a more rapid response with the production of larger early autophagosomes that matured into enlarged late degradative autolysosomes. Despite the production of enlarged LC3-positive early autophagosomes, membrane precursors containing WD-repeat protein interacting with phosphoinositides 1 (WIPI1) and mammalian Atg9 were not affected by ROCK inhibition, suggesting that phagophore elongation had been unusually extended. However, the enlarged autophagosomes were enriched in ULK1 which was essential to allow progression of autophagy flux. Our results demonstrate a novel role for ROCK in the control of autophagosome size and degradative capacity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号