首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural basis of activation of the alternative pathway C3 convertase was explored. For this purpose a modified isolation procedure of the activating enzyme, Factor D, was elaborated. The procedure affords a 70,000-fold purification of the enzyme with a 20% yield. A simple assay was designed for the quantitation of both Factor D and Factor B activity. On the basis of activity measurements and amino acid analysis, Factor D concentration in plasma was estimated to be 1 microgram/ml. Highly purified Factor D was used to activate Factor B in the presence of C3b and Mg++. The resulting fragments, Ba and Bb, were characterized with respect to their circular dichroism spectra, amino acid compositions, reactive sulfhydryl groups, and partial amino- and carboxy-terminal sequences. The results indicate that the Ba fragment constitutes the amino-terminal region and the Bb fragment the carboxy-terminal region of Factor B. The bond in Factor B that is cleaved by Factor D is proposed to be an arginyl-lysine bond.  相似文献   

2.
The fluid phase C3 convertase of the alternative pathway of human complement activation has been constructed from the isolated C3 component and from purified factors B and D. The enzyme was able to activate the isolated components C4 and C2 in the presence of C4 but had no effect on C2 in the absence of C4. The C4 and C2 activation was monitored by the loss of their hemolytic activity during the incubation with the alternative fluid phase C3 convertase. The activation of C4 and C2 components by the membrane-bound alternative C3 convertase formed on red cells (EC3bBb) was followed by the formation of C3 convertase of the classic pathway--EC4b2a. This resulted in the enhancement of hemolysis.  相似文献   

3.
Regulation by H of formation of the C3 and C5 alternative pathway convertases of complement on cells is dependent on such chemical characteristics of the cell surfaces as their membrane content in sialic acid. Properdin-stabilized C5 convertase sites were assembled on the non-activating cells of the alternative pathway, sheep erythrocytes (Es), and on the activating cells, desialated Es and rabbit erythrocytes (Er). C5 hemolytic sites were revealed by incubation of the convertase-bearing cells with limiting C5 and excess C6-C9. H inhibited generation of C5 hemolytic sites in a dose-related fashion on Es, Er, and desialated Es at molar ratios of H/C5 of 0.03 to 0.5. H similarly inhibited C5 utilization by the cell-bound C5 convertase on Es and desialated Es regardless of the cell membrane sialic acid content; however, H was three to five times less effective on Er. Kinetic experiments also suggested that C5 hemolytic sites are generated more rapidly on Er than on Es and desialated Es. The inhibition effect of H was independent of the number of C5 convertase sites per cell on all cell types; two to three times more residual hemolytic sites were found on convertase-bearing Es that had been incubated with C5 and H as compared with cells that had been decayed by H before incubation with C5. Furthermore, H also inhibited C5 interaction with a preformed classical pathway C5 convertase. These results suggest that H interacts with C5 so as to alter C5 binding and/or cleavage by the cell-bound C5 alternative pathway convertase. Sialic acid-independent modulation by H of C5 cleavage by the C5 convertase represents an additional regulatory step in the activation of the human alternative complement pathway.  相似文献   

4.
C5 convertase of the alternative C pathway is a complex enzyme consisting of three C fragments--one molecule of a major fragment of factor B (Bb) and two molecules of a major fragment of C3 (C3b). Within this C3bBbC3b complex, the first C3b binds covalently to the target surface, and Bb, which bears a catalytic site, binds noncovalently to the first C3b. In the present investigation, we studied the nature of the convertase that is assembled on E surfaces and obtained evidence that the second C3b binds directly to the alpha'-chain of the first through an ester bond rather than to the target surface. Thus, the alternative pathway C5 convertase could be described as a trimolecular complex in which Bb binds noncovalently to a covalently linked C3b dimer. We also obtained evidence that not only the second C3b but also the first C3b participates in binding C5, that is, covalently-linked C3b dimer acts as a substrate-binding site. Because of this two-site binding, the convertase has a much higher affinity for C5 than the surrounding monomeric C3b molecules. Based on this evidence, a new model of the alternative pathway C5 convertase is proposed. Covalent association of two subunits and the bivalent binding of the substrate are then common properties of the alternative and classical pathway C5 convertases.  相似文献   

5.
C5 convertase of the alternative complement pathway is a trimolecular complex consisting of two molecules of C3b and one molecule of Bb. We previously proposed a model of the alternative pathway C5 convertase in which the second C3b molecule binds covalently to the first C3b molecule bearing Bb, and the C5 molecule binds to each C3b molecule of the covalently linked C3b dimer, resulting in its appropriate presentation to the catalytic site on Bb. In the present study, we purified the covalently linked C3b dimer and reconstituted the C5 convertase with the C3b dimer and factors B and D to obtain evidence in support of this model. An insoluble glucan, OMZ-176, was incubated with human serum to activate the alternative pathway and to allow formation of the alternative C5 convertase on the surface of the glucan, and the glucan bearing the C5 convertase was then solubilized by incubation with glucosidases. In this way, the covalently linked C3b dimer was obtained in solution without using a detergent. The C3b dimer was then separated from enzymes, C3b monomer, C3b oligomer, and other materials by chromatographies. SDS-PAGE analysis demonstrated that the purified C3b dimer had intact alpha'-chains. Alternative pathway C5 convertase was reconstituted when the isolated C3b dimer was incubated with factors B and D. The presence of P enhanced C5 convertase formation threefold. These results support the notions that the formation of the covalently linked C3b dimer is a general phenomenon associated with activation of the alternative pathway and that the C3b dimer acts as a part of the C5 convertase.  相似文献   

6.
Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF.  相似文献   

7.
C3/C5 convertase is a serine protease that cleaves C3 and C5. In the present study we examined the C5 cleaving properties of classical pathway C3/C5 convertase either bound to the surface of sheep erythrocytes or in its free soluble form. Kinetic parameters revealed that the soluble form of the enzyme (C4b,C2a) cleaved C5 at a catalytic rate similar to that of the surface-bound form (EAC1,C4b,C2a). However, both forms of the enzyme exhibited a poor affinity for the substrate, C5, as indicated by a high Km (6-9 microM). Increasing the density of C4b on the cell surface from 8,000 to 172,000 C4b/cell did not influence the Km. Very high affinity C5 convertases were generated only when the low affinity C3/C5 convertases (EAC1,C4b,C2a) were allowed to deposit C3b by cleaving native C3. These C3b-containing C3/C5 convertases exhibited Km (0.0051 microM) well below the normal concentration of C5 in blood (0.37 microM). The data suggest that C3/C5 convertase assembled with either monomeric C4b or C4b-C4b complexes are inefficient in capturing C5 but cleave C3 opsonizing the cell surface with C3b for phagocytosis. Deposition of C3b converts the enzymes to high affinity C5 convertases, which cleave C5 in blood at catalytic rates approaching Vmax, thereby switching from C3 to C5 cleavage. Comparison of the kinetic parameters with those of the alternative pathway convertase indicates that the 6-9-fold greater catalytic rate of the classical pathway C5 convertase may compensate for the fewer numbers of C5 convertase sites generated upon activation of this pathway.  相似文献   

8.
The assembly of the classical pathway C3 convertase in the fluid phase has been studied. The enzyme is assembled from C2 and C4 on cleavage of these proteins by C1s. Once assembled, the enzyme activity decays rapidly. Kinetic evidence has been obtained that this decay is even more rapid than previously suggested (kdecay is 2.0 min-1 at 37 degrees C). As a result, optimal C3 convertase activity is only observed with high C1s levels, which result in rapid rates of cleavage of C2 and increased rates of formation of the C3 convertase. Using high concentrations of C1s at lower temperatures (22 degrees C) in the presence of excess substrate we have demonstrated kinetically that the enzyme comprises an equimolar complex of C4b and cleaved C2. We have obtained direct evidence from gel-filtration experiments for the role of C2a as the catalytic subunit of the enzyme. C2b appears to mediate the interaction between C4 (or C4b) and C2 at pH 8.5 and at low ionic strength where the interactions can easily be detected. It may therefore be important in the assembly of the enzyme, though it is not involved in the catalytic activity. The decay of the C3 convertase reflects the release of C2a from the C4b x (C2b) x C2a complex, and the stabilizing effect of iodine on the C3 convertase is therefore apparently one of stabilizing the C4b-C2z interaction, which is otherwise weak. C1s is not a part of the C3 convertase enzyme.  相似文献   

9.
We have reinvestigated whether surface immunoglobulin (sIg) on Trypanosoma lewisi is antibody directed toward parasite antigen by using flow cytometry to analyze parasites stained with fluoresceinated F(ab')2 fragments of antibodies to rat IgG and IgM. We have confirmed that IgG antibody to the parasites is present both in the serum of rats and on the surface of parasites between the fourth and twentieth days of infection, that the amount of sIg per cell increases as the infection progresses, and that considerably more IgG is present on parasites harvested from intact rats than on those from rats that had been immunosuppressed by whole body gamma-irradiation. In addition sIgM was detected on trypanosomes from intact, but not on parasites from irradiated rats. We have also made two observations suggesting that not all sIg is specific antibody made in response to T. lewisi. First, a low but significant amount of sIgG was detected on parasites throughout infection in irradiated rats; no sIgM was detected on these parasite. Second, when parasites harvested from immunosuppressed rats were incubated in normal rat serum, the amount of both sIgG and sIgM detected by flow immunofluorescence increased. Parasites harvested from intact animals bound IgM but not IgG from normal rat serum. These results suggest either that natural antibody to the trypanosomes is present in the serum of uninfected rats or that some rat immunoglobulins bind to structures on the trypanosome surface in ways that do not depend on usual antigen-antibody interactions. Finally, flow immunofluorescence was also used to detect complement component C3 on the surface of both intact and trypsinized bloodstream forms harvested from intact or immunosuppressed rats. The amount of sC3 per cell did not increase until late in the infection and consequently did not correlate with the increase of sIgG. Therefore, T. lewisi avoids destruction by the immune system although immune effector molecules, IgG, IgM, and C3, are on its surface.  相似文献   

10.
The purposes of this study were to demonstrate the C3 convertase complex, C3b, Bb (EC 3.4.21.47), of the alternative pathway of complement by ultracentrifugation and to determine whether the metal ion required for enzyme formation is present in the active enzyme complex. It has been shown previously that C3b,Bb formed with Ni2+ rather than Mg2+ exhibits enhanced stability. Using sucrose density gradient ultracentrifugation, an enzymatically active C3b,Bb(Ni) complex could be demonstrated which has a sedimentation coefficient of 10.7 S and which is stable in 10 mM EDTA. Upon formation of the enzyme with the radioisotope 63Ni2+, the ultracentrifugal distribution of the metal correlated with that of the enzyme complex. The molar ratio of Ni to C3b,Bb was 1:1. Displacement of Ni by Mg during formation of the enzyme indicated that both metals may bind to the same site in the enzyme. Binding of 63Ni to the catalytic site bearing fragment Bb was significantly stronger than its binding to C3b or to the zymogen, Factor B. It is proposed that there is one metal-binding site in the C3b,Bb enzyme which is not susceptible to chelation by EDTA and which is located in the Bb subunit.  相似文献   

11.
Previous studies focused on indels in the complement C345 protein family identified a number of potential protein-protein interaction sites in components C3 and C5. Here, one of these sites in C5, near the alpha-chain C terminus, was examined by alanine-scanning mutagenesis at 16 of the 18 non-alanine residues in the sequence KEALQIKYNFSF RYIYPLD. Alanine substitutions affected activities in the highly variable manner characteristic of binding sites. Substitutions at the lysine or either phenylalanine residue in the central KYNFSF sequence had the greatest effects, yielding mutants with <20% of the normal activity. These three mutants were also resistant to the classical pathway (CP) C5 convertase, with sensitivities roughly proportional to their hemolytic activities, but had normal susceptibilities to the cobra venom factor (CVF)-dependent convertase. Synthetic peptide MGKEALQIKYNFS-NH2 was found similarly to inhibit CP but not CVF convertase activation, and the effects of alanine substitutions in this peptide largely reflected those of the equivalent mutations in C5. These results indicate that residues KYNFSF form a novel, distal binding site for the CP, but not CVF convertase. This site lies approximately 880 residues downstream of the convertase cleavage site within a module that has been independently named C345C and NTR; this module is found in diverse proteins including netrins and tissue inhibitors of metalloproteinases.  相似文献   

12.
Cleavage of C5 by C5 convertase is the last enzymatic step in the complement activation cascade leading to the formation of the cytolytic proteolytically activated form of C5 (C5b)-9 complex. In the present study, we examined the effect of the density of C3b (the proteolytically activated form of C3) on the function of the noncatalytic subunit of natural surface-bound forms of the enzyme. A comparison of the kinetic parameters of C5 convertases assembled on three surfaces (zymosan, rabbit erythrocytes, and sheep erythrocytes) were similar and revealed that the average K:(m) decreased approximately 28-fold (5.2-0.18 microM) when the density of C3b was increased from approximately 18,000 to 400,000 C3b/cell. Very-high-affinity C5 convertases were generated when preformed C3 convertases were allowed to self amplify by giving them excess C3. These convertases exhibited K(m) from 0.016 to 0.074 microM, well below the normal plasma concentration of C5 in blood (0.37 microM). The results suggest that in serum convertases formed with monomeric C3b will be relatively inefficient in capturing C5 but will continue to cleave C3 opsonizing the cell surface for phagocytosis, whereas convertases formed with C3b-C3b complexes in areas of high C3b density will primarily cleave C5. The catalytic rate of these convertases approaches maximum velocity, thereby switching the enzyme from cleavage of C3 to cleavage of C5, and production of the cytolytic C5b-9 complex.  相似文献   

13.
The multi-domain serine protease C2 provides the catalytic activity for the C3 and C5- convertases of the classical and lectin pathways of complement activation. Formation of these convertases requires the Mg(2+)-dependent binding of C2 to C4b, and the subsequent cleavage of C2 by C1s or MASP2, respectively. The C-terminal fragment C2a consisting of a serine protease (SP) and a von Willebrand factor type A (vWFA) domain, remains attached to C4b, forming the C3 convertase, C4b2a. Here, we present the crystal structure of Mg(2+)-bound C2a to 1.9 A resolution in comparison to its homolog Bb, the catalytic subunit of the alternative pathway C3 convertase, C3bBb. Although the overall domain arrangement of C2a is similar to Bb, there are certain structural differences. Unexpectedly, the conformation of the metal ion-dependent adhesion site and the position of the alpha7 helix of the vWFA domain indicate a co-factor-bound or open conformation. The active site of the SP domain is in a zymogen-like inactive conformation. On the basis of these structural features, we suggest a model for the initial steps of C3 convertase assembly.  相似文献   

14.
C3 nephritic factor (C3NeF) defined by the capacity of nephritic serum and its fractions to initiate loss of the B antigen of C3 in normal serum was purified from the serum of three different donors and shown to function by stabilization of membrane-bound and fluid phase alternative pathway C3 convertase. C3NeF converts cell-bound C3B sites in a dose-related manner to CEB(NeF) sites, which exhibit an approximate 10-fold increase in half-life. The linear relationship between the C3NeF input and the residual hemolytic sites on EAC43B present after incubation for 20 min at 30 degrees C, during which labile C3B sites have decayed, indicates that the number of residual C3B sites is directly related to the dose of C3NeF. The capacity of C3NeF to stabilize the C3B convertase in a temperature- and dose-dependent manner, which is independent of binding or consumption of C3NeF, in a fluid phase reaction mixture of 125I-B, 131I-C3 and D permits isolation of a 10S complex containing radiolabeled C3 and B and exhibiting C3, convertase activity on an exogenous C3 source. Thus, the stabilizing effect of C3NeF is not limited to membrane-bound C3B but is also sufficient to permit recovery of a fluid phase C3 convertase formed during the interaction of C3, B, and D.  相似文献   

15.
Contact between blood and a biomaterial surface induces an immediate complement-mediated inflammatory response. Under these conditions, the alternative pathway of complement is often initiated and amplified on the biomaterial surface. Adsorption of a protein such as C3 to a polymer surface induces conformational changes in the protein. Based on the expression on adsorbed C3 of conformational neoepitopes specific for bound C3 fragments, we have hypothesized that adsorbed C3 is able to bind factor B and form a functional C3,Bb convertase. Using a quartz crystal microbalance to monitor binding of proteins to a polymer surface, we have demonstrated that a functional C3-containing alternative pathway convertase can be formed, in particular, in the presence of properdin. These data indicate that adsorption of C3 induces conformational changes that turn C3 into a C3b-like molecule that is able to participate in the functioning of the alternative convertase, and they suggest a new mechanism for complement activation on a biomaterial surface.  相似文献   

16.
C5 convertase of the classical complement pathway is a trimolecular protein complex consisting of C4b, C2a, and C3b. In the complex there is an ester bond between C3b and C4b. We analyzed the C5 convertase formed on erythrocytes and localized the covalent binding site of C3b to a small region on C4b. The covalently linked C4b.C3b complex was purified from a detergent extract of the erythrocytes and digested with lysyl endopeptidase. An Mr 17,000 fragment containing the ester linkage between C4b and C3b was purified and its amino-terminal sequence was examined. Two amino acids were obtained at each cycle and identified with those in the sequences of C3 and C4. The sequence derived from C3 corresponded to the thioester region. The sequence derived from C4 started at Ala-1186. Alkali treatment of the fragment yielded an Mr 7,000 peptide derived from C4, which thus appeared to span the region of C4 from Ala-1186 to Lys-1259. Therefore, the covalent C3b-binding site on C4b is located within a 74-residue region of the primary structure. This finding supports the notion that after cleavage of C3 by the C4b2a complex, the covalent binding of metastable C3b to C4b is a specific reaction to form a trimolecular complex with a defined quaternary structure.  相似文献   

17.
C3 nephritic factor (C3NeF) has been shown to be composed of two heavy and two light chains, like IgG; in addition it shares antigenic determinants with IgG. C3NeF, purified from the sera of eight patients by incorporation of C3NeF into the stabilized fluid phase amplification C3 convertase, C3bBb(C3NeF), followed by its release after decay of convertase function, was investigated for its ability to bind 125I-C1q and to activate 125I-C1. It was found that although fluid phase C3b,Bb(C3NeF) is fully capable of binding 125I-C1q, it is not able to activate 125I-C1 even at concentrations of 1.3 x 10(12) C3bBb(C3NeF) complexs/ml. On the other hand, cell-bound C3bBb(C3NeF) is capable of both binding 125I-C1q and activating 125I-C1. This discrepancy between fluid phase and cell-bound, C3bBb(C3NeF) was found for C3NeF preparations from eight different patients and therefore seems to apply to all C3NeF preparations.  相似文献   

18.
The herpesvirus saimiri genome encodes a complement control protein homolog (CCPH). Stable mammalian cell transfectants expressing a recombinant transmembrane form of CCPH (mCCPH) or a 5'FLAG epitope-tagged mCCPH (5'FLAGmCCPH) conferred resistance to complement-mediated cell damage by inhibiting the lytic activity of human serum complement. The function of CCPH was further defined by showing that the mCCPH and the 5'FLAGmCCPH transfectants inhibited C3 convertase activity and effectively reduced cell surface deposition of the activated complement component, C3d.  相似文献   

19.
Human complement factor H-related protein (CFHR) 4 belongs to the factor H family of plasma glycoproteins that are composed of short consensus repeat (SCR) domains. Although factor H is a well known inhibitor of the alternative complement pathway, the functions of the CFHR proteins are poorly understood. CFHR4 lacks SCRs homologous to the complement inhibitory domains of factor H and, accordingly, has no significant complement regulatory activities. We have previously shown that CFHR4 binds C-reactive protein via its most N-terminal SCR, which leads to classical complement pathway activation. CFHR4 binds C3b via its C terminus, but the significance of this interaction is unclear. Therefore, we set out to clarify the functional relevance of C3b binding by CFHR4. Here, we report a novel role for CFHR4 in the complement system. CFHR4 serves as a platform for the assembly of an alternative pathway C3 convertase by binding C3b. This is based on the sustained ability of CFHR4-bound C3b to bind factor B and properdin, leading to an active convertase that generates C3a and C3b from C3. The CFHR4-C3bBb convertase is less sensitive to the factor H-mediated decay compared with the C3bBb convertase. CFHR4 mutants containing exchanges of conserved residues within the C-terminal C3b-binding site showed significantly reduced C3b binding and alternative pathway complement activation. In conclusion, our results suggest that, in contrast to the complement inhibitor factor H, CFHR4 acts as an enhancer of opsonization by promoting complement activation.  相似文献   

20.
The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号