首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiration inhibitors, in particular KCN and NaN3, inhibited slightly the dark-induced (scotonasty) as well as the light-induced (photonasty) leaflet movements of Cassia fasciculata: they act only at concentrations higher than 1 millimolar and 0.1 millimolar, respectively. Amytal induced a stronger inhibitory effect on scotonasty. Salicylhydroxamic acid, which inhibits the cyanide-insensitive respiration pathway, was also poorly effective when applied alone. KCN and salicylhydroxamic acid applied together increased the inhibition. Uncouplers of oxidative phosphorylation were very effective: 2,4-dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone inhibited the scotonastic movements at concentrations higher than 10 μm and 1 μm, respectively. Although uncouplers reduced the photonastic movements at higher concentrations, they promoted leaflet opening at other concentrations in an unexpected way.  相似文献   

2.
The effects of G protein and cGMP on phytochrome-mediated amaranthin biosynthesis inAmaranthus caudatus seedlings were studied. It was shown that G protein agonist cholera toxin induced amarathin synthesis in darkness, whereas G protein antagonist pertussis toxin inhibited red light-induced amaranthin synthesis. Amaranthin synthesis was also induced by exogenous cGMP, while the amaranthin biosynthesis induced by cholera toxin, red light and exogenous cGMP was inhibited by genistein. L Y-83583, an inhibitor of guanylyl cyclase, inhibited the amarenthin synthesis induced both by red light and cholera toxin, while it was not able to inhibit the amaranthin synthesis induced by exogenous cGMP. These results suggest that G protein, guanylyl cyclase and cGMP were the candidates in phytochrone signal transduction chain for red light-induced amaranthin biosynthesis and the red light signal transduction chain might be as follows: red light → phytochrome → G protein → guanylyl cyclase → cGMP.  相似文献   

3.
When applied to pulvini of Mimosa pudica, jasmonic acid (JA)affected neither proton fluxes nor the membrane potential ofthe motor cells. When added to leaflets of Cassia fasciculata,JA increased the rate of dark-induced pulvinar movements ina concentration-dependent manner. This effect was observed withinas little as 15 min after a 1-h treatment that preceded theinducing signal. Treatments in buffered media at acidic pH resultedin the greatest physiological responses. Light-induced pulvinarmovements were considerably reduced under the same conditions.With continuous illumination, JA induced a closing movementof the leaflets in a concentrationdependent manner. These resultsare discussed in relation to the ionic changes in the pulvinarmotor cells and in relation to results obtained previously upontreatment of Cassia plants with ABA. Although ABA and JA havesimilar physiological effects on the dark-induced closure, theydiffer in the type of response elicited by brief treatment andwith respect to light-induced opening. (Received September 27, 1993; Accepted January 15, 1994)  相似文献   

4.
The effects of G protein and cGMP on phytochrome-mediated amaranthin biosynthesis inAmaranthus caudatus seedlings were studied. It was shown that G protein agonist cholera toxin induced amarathin synthesis in darkness, whereas G protein antagonist pertussis toxin inhibited red light-induced amaranthin synthesis. Amaranthin synthesis was also induced by exogenous cGMP, while the amaranthin biosynthesis induced by cholera toxin, red light and exogenous cGMP was inhibited by genistein. L Y-83583, an inhibitor of guanylyl cyclase, inhibited the amarenthin synthesis induced both by red light and cholera toxin, while it was not able to inhibit the amaranthin synthesis induced by exogenous cGMP. These results suggest that G protein, guanylyl cyclase and cGMP were the candidates in phytochrone signal transduction chain for red light-induced amaranthin biosynthesis and the red light signal transduction chain might be as follows: red light → phytochrome → G protein → guanylyl cyclase → cGMP.  相似文献   

5.
Stomatal movements depend on both ion influx and efflux; attainment of steady state apertures reflects modulation of either or both processes. The role of Ca2+ in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca2+ chelator EGTA to reduce apoplastic [Ca2+]. The results suggest that a certain concentration of Ca2+ is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance of stomata in the open state does not necessarily depend on continued K+ influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO2 causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO2-induced closing of open stomata but only partially prevented the inhibition of opening.  相似文献   

6.
The photonastic upward movement and scotonastic downward movementof the primary leaf of Phaseolus coccineus L. depends on ionfluxes across the plasma membrane of extensor and flexor cellsof the laminar pulvinus. Extensor protoplasts cultured in 0.4M mannitol, 10 mM KCl, 1 mM CaCl2 and 5 mM MES-KOH buffer pH6 were found to swell upon switching on white light at the endof a 15 h dark period and to shrink upon switching off the lightat the end of the following 9 h light period, behaviour consistentwith that expected in the cells of intact plants. Light-inducedswelling requires Ca2+ in the surrounding medium. Both the Ca2+channel blocker verapamil and La3+ inhibited this reaction,whereas TMB-8, an inhibitor of intracellular Ca2+ transport,had no effect. When the Ca2+ iono phore A 23187, the Ca2+ channelagonist Bay K-8644, or thapsigargin, an inhibitor of Ca2+ -ATPasesat endo-membranes, was added to the medium, extensor proto-plastsswelled in the dark. These results suggest that in extensorprotoplasts light opens Ca2+ channels in the plasma membraneand that the influx of extracellular Ca2+ results in an increasedcytoplasmic Ca2+ concentration which is sufficient to mimicthe light-on signal in activating or deactivating the ion transportersrequired for swelling. Dark-induced shrinking occurred in Ca2+-free medium. It was not inhibited by verapamil, but was byTMB-8. Both neomycin and Li+ , substances which are known toinhibit the phosphoinositide path way of transmembrane signalling,inhibited dark induced shrinking. Myo-inositol nullified theLi+ inhibition of dark-induced shrinking. Neither A 23187 norBay K-8644 induced shrinking in the light, but were able tonullify the inhibitory effect of TMB-8 on dark-induced shrinking.These results suggest that, in extensor protoplasts, the shrinkingsignal ‘light off’ is transduced through phosphoinositidehydrolysis and Ca2+ release from internal stores. In additionto the inositol 1,4,5-trisphosphate (IP3)-induced increase ofthe cytoplasmic Ca2+ concentration, further events dependingon the light-off signal appear to be required for shrinking. Key words: Phaseolus pulvinus, extensor protoplasts, light-induced swelling, dark-induced shrinking, Ca2+, phosphoinositide signalling  相似文献   

7.
Recent evidence suggests that nitric oxide (NO) acts as an intermediate of ABA signal transduction for stomatal closure. However, NO's effect on stomatal opening is poorly understood even though both opening and closing activities determine stomatal aperture. Here we show that NO inhibits stomatal opening specific to blue light, thereby stimulating stomatal closure. NO inhibited blue light-specific stomatal opening but not red light-induced opening. NO inhibited both blue light-induced H(+) pumping and H(+)-ATPase phosphorylation. The NO scavenger 2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) restored all these inhibitory effects. ABA and hydrogen peroxide (H(2)O(2)) inhibited all of these blue light-specific responses in a manner similar to NO. c-PTIO partially restored the ABA-induced inhibition of all of these opening responses but did not restore inhibition of the responses by H(2)O(2). ABA, H(2)O(2) and NO had slight inhibitory effects on the phosphorylation of phototropins, which are blue light receptors in guard cells. NO inhibited neither fusicoccin-induced H(+) pumping in guard cells nor H(+) transport by H(+)-ATPase in the isolated membranes. From these results, we conclude that both NO and H(2)O(2) inhibit blue light-induced activation of H(+)-ATPase by inhibiting the component(s) between phototropins and H(+)-ATPase in guard cells and stimulate stomatal closure by ABA.  相似文献   

8.
2,4-dichlorophenoxyacetic (2,4-D) applied to excised leaves of Cassia fasciculata modified the dark-induced (scotonasty) and light-induced (photonasty) leaflet movements, showing that this compound acts on rapid turgor variation and the concomitant ion migrations, in particular K+. 2,4-D inhibited the scotonastic closure in a dose-dependent manner from 10–8 M to 10–5 M and promoted the photonastic opening in the same range of concentrations. The compound acted rapidly since a treatment as short as 5 min gave an obvious effect on the motile reaction; however, a lag period of 45–60 min was needed to observe its effect. Although 2,4-D is a weak acid, its greatest physiological efficiency was obtained with pH values close to neutrality. The physiological results are discussed in relation to the chemical properties and the characteristics of transport of the molecule.Abbreviations ABA abscisic acid - 6-BAP 6-benzylaminopurine - 2,4-D 2,4 dichlorophenoxyacetic acid - GA3 gibberellic acid - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulphonic acid] - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - MES 2-(N-morpholino)-ethanesulphonic acid  相似文献   

9.
A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.  相似文献   

10.
G. Roblin  J. Bonmort 《Planta》1984,160(2):109-112
Prostaglandin E1 and prostaglandin E2 speed up the dark-induced (scotonastic) and light-induced (photonastic) leaflet movements of Cassia fasciculata. The precursors of prostaglandin biosynthesis, homo -linolenic and arachidonic acids, and an intermediary product, prostaglandin-interm-5, act in the same manner on these movements. Inhibitors of prostaglandin biosynthesis, indomethacin and phenylbutazone, inhibited the scotonastic but promoted the photonastic movements in an unexpected way. Since the pulvinar movements are mediated by water and ion migrations, the observed modifications of these movements indicate that prostaglandins and their precursors may affect, as in animal cells, processes linked to a variation of membrane permeability.Abbreviations PGE1 prostaglandin E1 - PGE2 prostaglandin E2  相似文献   

11.
Tanno N 《Plant physiology》1984,74(1):186-188
Treating of the dark-imbibed lettuce (Lactuca sativa L.) seeds prior to light irradiation with 1 millimolar KCN or NaN3 in the dark for 3 hours prevented blue light and far-red light-induced inhibitions of phytochrome-mediated germination. Similarly, salicylhydroxamic acid (SHAM) at 10 millimolar counteracted the blue and far-red light inhibitions, the combined application of KCN and SHAM being more effective than KCN or SHAM alone in some experiments. These respiratory inhibitors slightly inhibited phytochrome-mediated lettuce seed germination. These results indicate that both CN-sensitive, conventional cytochrome oxidase and CN-resistant (SHAM-sensitive), alternative respiration may be involved in the light inhibition or that an appropriate balance of both may be necessary for the light inhibition.  相似文献   

12.
In Arabidopsis leaves there is a bi-phasic dose-response to applied nucleotides; i.e., lower concentrations induce stomatal opening, while higher concentrations induce closure. Two mammalian purinoceptor antagonists, PPADS and RB2, block both nucleotide-induced stomatal opening and closing. These antagonists also partially block ABA-induced stomatal closure and light-induced stomatal opening. There are two closely related Arabidopsis apyrases, AtAPY1 and AtAPY2, which are both expressed in guard cells. Here we report that low levels of apyrase chemical inhibitors can induce stomatal opening in the dark, while apyrase enzyme blocks ABA-induced stomatal closure. We also demonstrate that high concentrations of ATP induce stomatal closure in the light. Application of ATPγS and chemical apyrase inhibitors at concentrations that have no effect on stomatal closure can lower the threshold for ABA-induced closure. The closure induced by ATPγS was not observed in gpa1-3 loss-of-function mutants. These results further confirm the role of extracellular ATP in regulating stomatal apertures.  相似文献   

13.
Salicylic and acetylsalicylic acids applied on excised leaves of Cassia fasciculata modify the dark-induced (scotonastic) and light-induced (photonastic) leaflet movements. They inhibit the scotonastic movements in a dose-dependent manner from 1 × 10−4 to 1 × 10−3 molar and they promote the photonastic movements at an optimum concentration of 5 × 10−4 molar. These results suggest that these phenolic compounds do not act specifically on the K+ uptake, which was shown to be inhibited by their action on other materials.  相似文献   

14.
Chlorophyll a fluorescence transients from mesophyll and single guard cell pairs of Vicia faba were measured by microspectrofluorometry. In both chloroplast types, fluorescence induction (O to P) was similar under actinic blue and green light. In slow transients from mesophyll cell chloroplasts, blue and green light induced identical, typical rapid quenching from P to S, and the M peak. In contrast, the P to S transient from guard cell (GC) chloroplasts irradiated with blue light showed a much slower quenching rate, and the P to T transition showed no M peak. Actinic green light induced mesophyll-like transients in GC chloroplasts, including rapid quenching from P to S and the M peak. Detection of these transients in single pairs of GC and isolated protoplasts ruled out mesophyll contamination as a signal source. Green light induced a rapid quenching and the M peak in GC chloroplasts from several species. The effect of CO2 concentration on the fluorescence transients was investigated in the presence of HCO3 at pH 6.8 and 10.0. In transients induced by green light in both chloroplast types, a pH increase concomitant with a reduction in CO2 concentration caused an increase in the initial rate of quenching and the elimination of the M peak. Actinic blue light induced mesophyll-like transients from GC chloroplasts in the presence of 10 micromolar KCN, a concentration at which the blue light-induced stomatal opening is inhibited. Addition of 100 to 200 micromolar phosphate also caused large increases in fluorescence quenching rates and a M peak. These results indicate that blue light modulates photosynthetic activity in GC chloroplasts. This blue light effect is not observed in the absence of transduction events connected with the blue light response and in the presence of high phosphate concentrations.  相似文献   

15.
In rat parotid glands, the involvement of the microfilament system in the cellular signal transmission mechanism was tested by measuring the effect of cytochalasin D (which disturbs the microfilament system) on the production of intracellular second messengers. Cytochalasin D (CD) did not affect unstimulated calcium movements (measured by the 45Ca efflux technique) or inositol phosphate production or cAMP accumulation. Neither did it modify the generation of intracellular second messengers induced by activation of the cholinergic muscarinic receptor (calcium and inositol phosphates). CD dit not affect the cAMP accumulation induced by the activation of the beta-adrenergic receptor whereas it strongly inhibited the calcium movements induced by activation of the same receptor. These data suggest that, in rat parotid glands, calcium movements, induced by beta-adrenergic receptor stimulation need an intact microfilament system to occur, whereas the muscarinic pathway (via IP3) does not.  相似文献   

16.
Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems.  相似文献   

17.
Benzoic acid and its o-, m- and p-hydroxy derivatives appliedon excised leaves of Cassia fasciculata modified the dark-induced(scotonasty) and light-induced (photonasty) leaflet movements.Benzoic acid inhibited the scotonastic closure in a dose-dependentmanner from 10–4M to 10–3M and promoted the photonasticopening at optimum concentration of 5.10–4M. These effectswere dependent upon the position of hydroxyl group on the benzoicring, the o-derivative inducing a stronger effect than the m-and p-derivatives. Experiments showed that treatment with o-hydroxybenzoicacid had not to exceed 30–60 min and that the maximumeffect was obtained at pH 5.5. (Received September 16, 1986; Accepted June 22, 1987)  相似文献   

18.
Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR‐induced stomatal movements is studied. The effects of 24‐epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)‐deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR‐induced stomatal movements were closely related to dynamic changes in H2O2 and redox status in guard cells. The stomata of SlRBOH1‐silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR‐induced stomatal closure but did not affect EBR‐induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR‐induced stomatal opening. The results suggest that transient H2O2 production is essential for poising the cellular redox status of glutathione, which plays an important role in BR‐induced stomatal opening. However, a prolonged increase in H2O2 facilitated ABA signalling and stomatal closure.  相似文献   

19.
Schwartz A 《Plant physiology》1985,79(4):1003-1005
Ca2+ (0.1-1.0 millimolar) accelerated dark-induced stomatal closure and reduced stomatal apertures in the light in epidermal peels of Commelina communis L. In contrast, ethyleneglycol-bis-(β-aminoethyl ether) N,N′tetraacetic acid (EGTA) (2 millimolar), a Ca2+ chelator, prevented closure in the dark and accelerated opening in the light. EGTA did not promote significant opening in the dark. It is therefore concluded that EGTA does not increase ion uptake into guard cells, but rather prevents ion efflux. Addition of EGTA to incubating solutions with 10 millimolar KCl resulted in steady state apertures of 15.6 micrometers, whereas in the absence of EGTA similar apertures required 55 millimolar KCl and 150 millimolar KCl was needed in the presence of 1 millimolar CaCl2. The results demonstrate the importance of Ca2+ in the regulation of stomatal closure and point to a role of Ca2+ in the regulation of K+ efflux from stomatal guard cells.  相似文献   

20.
《Plant Science Letters》1976,6(2):111-115
Abscisic acid (ABA) inhibited the light-induced opening of stomata in isolated epidermal strips of Commelina benghalensis. It did not alter stomatal closure in the dark. The ABA-induced inhibition in light was released under conditions conducive for cyclic photophosphorylation and remarkably reversed by ATP in the presence of pyruvate. Cyclic photophosphorylation rates of isolated guard cell chloroplasts were significantly reduced by ABA. It is proposed that the direct effect of ABA on stomatal opening was mediated in two ways: (1) by inhibition of cyclic photophosphorylation activities of guard cell chloroplasts and (2) by blocking organic acid formation in guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号