首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study investigates the regulatory effects of glycosaminoglycans such as heparin and heparan sulfate on T cell proliferation induced by thymic stromal cell monolayer or its derived T cell growth factor (TCGF). A thymic stromal cell clone (MRL104.8a) supported the growth of Ag-specific, IL-2-dependent Th cell clone (9-16) in the absence of Ag and IL-2 by producing a unique TCGF designated as thymic stroma-derived T cell growth factor (TSTGF). The addition of heparin to cultures in which the growth of 9-16 Th cells was otherwise stimulated by the MRL104.8a monolayer or a semipurified sample of the TSTGF resulted in heparin dose-dependent inhibition of 9-16 Th proliferation. The dose of heparin required for inducing 50% reduction of TSTGF-induced proliferation of Th at a given cell number was found to be proportional to the magnitude of the TSTGF added to cultures, suggesting that heparin exerted its inhibitory effect by binding to the TSTGF rather than by acting on Th cells. A similar growth-inhibiting effect of heparin was observed in IL-7-dependent proliferation of pre-B cell line or Th, but not in IL-2-dependent T cell proliferation or IL-3-dependent myeloid cell proliferation. A strong affinity of TSTGF and IL-7 for heparin was confirmed by the fact that both TSTGF and IL-7 adhered to columns of heparin-agarose and were eluted by salt. When various glycosaminoglycans were tested for the heparin-like Th growth-regulatory capacity, heparan sulfate exhibited Th growth-inhibiting ability comparable to that observed for heparin. These results indicate that the activity of thymic and/or bone marrow stroma-derived lymphocyte growth factor (TSTGF/IL-7) but not of Th-producing TCGF (IL-2) is negatively regulated by heparin or heparan sulfate, which would represent major glycosaminoglycans in the extra-cellular matrix of stromal cells.  相似文献   

2.
Two bone marrow stromal cell lines isolated from the adherent layer of a Dexter-type long term bone marrow culture differ markedly in their hemopoietic support capacity. S17 supports myelopoiesis and the differentiation of early B cell precursors into B lymphocytes while S10 supports myeloid cell differentiation and not B lymphopoiesis. The identification of a stromal cell line with B cell support capacity prompted an investigation of whether the effects of S17 were mediated via soluble factors. Results presented herein indicate that medium conditioned by S17 but not S10 contains an activity that can induce the expression of the 220,000 m.w. 14.8 antigen and cytoplasmic mu H chain of Ig in B lymphocyte progenitors that have not yet expressed these markers. Bone marrow cells were depleted of 14.8+, cytoplasmic mu+ pre-B cells on antibody-coated petri dishes. After 24-h liquid culture newly generated pre-B cells were enumerated as cells that expressed cytoplasmic mu H chain of Ig but not Ig L chains by immunofluorescence. Expression of Ly5(220) was monitored by 14.8 antibody binding. This pre-B cell differentiation activity was abrogated by digestion with pronase, aminopeptidase, or carboxypeptidase. Isoelectric focusing data revealed the activity to have isoelectric point of 5.9 to 6.2. S17-conditioned medium was fractionated using HPLC and each fraction tested for pre-B cell-generating activity. Fractions collected from a Superose 12 gel filtration column were found to have two peaks of activity associated with molecules of apparent m.w. of approximately 60,000 and 10,000. Virtually identical peaks of activity were observed when medium conditioned by heterogeneous stromal cell cultures was fractionated. Separation of S10-conditioned medium revealed no cryptic activity. S17-conditioned medium was further characterized by anion exchange chromatography and the majority of the pre-B cell generating activity shown to be associated with the void volume that eluted from a MonoQ column. These fractions were rechromatographed on Superose and the activity again found to be associated with two fractions corresponding to apparent m.w. of 60,000 and 10,000. The S17 pre-B cell differentiation activity appears to result from the presence of a novel molecule because other well characterized mediators had no activity in this short-term liquid culture system. No pre-B cell-generating activity was observed when IL-1 or conditioned medium containing IL-2, IL-3, or IL-4 (B cell stimulatory factor 1) were added to cultures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Our experiments have addressed regulation of B lymphocyte formation by bone marrow stromal cells. Stromal cells appear to produce a regulatory factor that acts at the pre-B cell stage to induce the expression of Ig L chains and surface Ig. Bone marrow stromal cell conditioned medium was found to contain this factor and the active component was partially purified by HPLC. This stromal cell-derived factor had a m.w. between 16,000 and 20,000, was specifically neutralized by anti-IL-4 mAb, 11B11, and enhanced the proliferation of anti-mu-stimulated B cells. We also found that rIL-4 induced B cell formation in culture. In our studies, IL-1 had no direct effect on pre-B cell maturation, however, IL-1 was found to stimulate the production of IL-4 by both heterogeneous bone marrow stromal cells and a cloned stromal cell line, SCL-160. These effects of IL-1 on factor production by stromal cells were duplicated by the addition of bone marrow-derived macrophages to SCL-160 cells. We conclude that stromal cell-derived IL-4 is a physiologic stimulator for B cell generation. In addition, macrophages appear to play a role in B cell formation by regulating the production of IL-4 by stromal cells via the secretion of IL-1.  相似文献   

4.
A close relationship exists between adipocyte differentiation of stromal cells and their capacity to support hematopoiesis. The molecular basis for this is unknown. We have studied whether dlk, an epidermal growth factor-like molecule that intervenes in adipogenesis and fetal liver hematopoiesis, affects both stromal cell adipogenesis and B-cell lymphopoiesis in an established pre-B-cell culture system. Pre-B-cell cultures require both soluble interleukin-7 (IL-7) and interactions with stromal cells to promote cell growth and prevent B-cell maturation or apoptosis. We found that BALB/c 3T3 fibroblasts express dlk and function as stromal cells. Transfection of these cells with antisense dlk decreased dlk expression and increased insulin-induced adipocytic differentiation. When antisense transfectants were used as stroma, IL-7 was no longer required to support the growth of pre-B cells and prevent maturation or apoptosis. Antisense dlk transfectants of S10 stromal cells also promoted pre-B-cell growth in the absence of IL-7. These results show that modulation of dlk on stromal cells can influence their adipogenesis and the IL-7 requirements of the pre-B cells growing in contact with them. These results indicate that dlk influences differentiation signals directed both to the stromal cells and to the lymphocyte precursors, suggesting that dlk may play an important role in the bone marrow hematopoietic environment.  相似文献   

5.
Multilineage hemopoiesis induced by cloned stromal cells   总被引:1,自引:0,他引:1  
Long-term hemopoiesis in culture depends upon the presence of an adherent layer composed of a variety of stromal cells. A subtype of endothelial-adipocytes from the bone marrow stroma (clone 14F1.1) was previously shown to induce long-term myelopoiesis and renewal of pluripotent stem cells. One of a series of stromal cell lines and clones from mouse thymus stroma (STAC-1.2) has now been found to support long-term hemopoiesis. These marrow- and thymus-derived stromal cell clones also have lymphopoietic activities: precursor T cells, or pre-B cells accumulated in co-cultures of thymus cells and the stromal clones, as indicated by cell surface markers, T cell receptor and immunoglobulin gene rearrangements. The predominance of a cell type in these cultures depended upon the serum used to supplement the medium. Recombinant interleukin 2 (IL-2) and the 14F1.1 clone synergistically promoted the proliferation of thymocytes, while a thymus hormone, THF-gamma 2, shifted the population to a relatively mature phenotype. It is proposed that one major function of stromal cells, whether from the bone marrow or thymus, is to restrain the maturation flow and preferentially support the accumulation of cells at early differentiation stages.  相似文献   

6.
We have previously reported that the addition of lithium chloride (LiCl) to murine Dexter cultures results in increased numbers of progenitor and mature hematopoietic cells of the granulocyte, macrophage, and megakaryocyte lineages. We now report the effect of various levels of LiCl on the high proliferative potential colony-forming cell (HPP-CFC) in Dexter culture and on the induction of growth factors from Dexter stromal cells. LiCl (4 mEq/L) stimulated supernatant HPP-CFC for the first 4 weeks of culture (150-275%), and stimulated stromal HPP-CFC at week 3 (170-222%). Higher levels of lithium (8 and 12 mEq/L) selectively stimulated supernatant HPP-CFC, macrophage, and eosinophil production, whereas granulocytes and granulocyte-macrophage colony-forming cells (CFU-C) were inhibited. mRNA expression was evaluated from week 4 Dexter cultures that received a pulse or continuous exposure to lithium and had received either 0 or 1,100 cGy irradiation. Four mEq/L LiCl stimulated increased expression of G-CSF, GM-CSF, IL-6, and, in the nonirradiated stroma continuously exposed to lithium, CSF-1 mRNA. In general, the higher levels of lithium stimulated increased mRNA expression for these same growth factors. mRNA for the recently described Steel factor was decreased with increasing levels of lithium added to either normal or irradiated stroma. Bioassays of conditioned medium (cm) from irradiated cultures against the FDC-P1 and T1165 cell lines indicated cytokine activity, which was blocked by antibodies to GM-CSF and IL-6, respectively. Altogether these data show that lithium stimulates Dexter HPP-CFC, and this stimulation appears to be mediated by multiple growth factors that are induced from stromal cells.  相似文献   

7.
We have cloned a stromal cell from mouse bone marrow selected on the basis of its ability to promote the growth of an Abelson virus-transformed pre-B cell line. These stromal cells have smooth muscle features, and the ultrafiltrate of stromal cell-conditioned medium has proliferative effects on all feeder layer-responsive mouse pre-B cell lines tested, as well as on normal pre-B cells. One of these low MW substances is a protease-resistant factor with an MW of approximately 450 Da which we designate Abelson Growth Promoter (AGP). AGP was initially characterized as an activity which promotes the growth of Abelson virus-transformed mouse pre-B cells, but it also promotes the growth of a ras-transformed pre-B cell line as a single agent and in synergistic fashion with recombinant interleukin (IL) 7. AGP as a single agent has no effect on normal pre-B cells, which have a brisk response to IL-7. In contrast, transformed pre-B cells display a blunted response to IL-7. We propose that AGP plays a role in normal lymphopoiesis by expanding clones of pre-B cells which have been activated by other stromal cell-derived signals, such as IL-7, and directly promotes the growth of nascently transformed pre-B cells.  相似文献   

8.
IL-1 inhibits B cell differentiation in long term bone marrow cultures   总被引:2,自引:0,他引:2  
There is evidence that stromal cells are responsive to changes in their external milieu and that this can affect their function. IL-1 has been identified as one mediator that can affect stromal cells by increasing their secretion of CSF. The monokine has also been reported to be a B cell differentiation factor. The purpose of this study was to test the effects of IL-1 on the pattern of hemopoietic cell differentiation by adding IL-1 alpha to myeloid long term bone marrow cultures (MBMC) at the time of their transfer to lymphoid bone marrow culture conditions. This usually results in the cessation of myelopoiesis and the induction of B lymphopoiesis. The addition of 50 U/ml of rIL-1 alpha, but not 10 U/ml, to MBMC at the time of their transfer to lymphoid conditions resulted in a complete inhibition of B cell differentiation and sustained myelopoiesis. To determine whether adherent layer cells contributed to this effect, conditioned medium (CM) was collected from adherent layers treated previously with the antibiotic mycophenolic acid. This depletes the hemopoietic cells from the cultures and retains a purified population of stromal cells. CM from mycophenolic acid- treated adherent layers exposed for 24 h to 50 U/ml of IL-1 was added at volume concentrations of 5, 10, and 25% to MBMC at the time of transfer to lymphoid bone marrow culture conditions and at each feeding thereafter. Expression of the B lineage associated 14.8 Ag and IgM was inhibited on a dose dependent basis, and myelopoiesis was sustained in cultures to which 25% CM had been added. Induction of B lymphopoiesis occurred in cultures to which adherent cell CM not exposed to IL-1 had been added. The CM from the IL-1-treated adherent cells contained CSF, because it promoted the growth of myeloid colonies from fresh marrow or MBMC cells and stimulated the granulocyte-macrophage-CSF sensitive FDC-P1 cell line to proliferate. IL-3 was not present in the CM, because stimulation of the IL-3 sensitive 32D cell line was not observed. The CM from the IL-1-treated adherent cells stimulated thymocytes to proliferate in the presence of PHA. This raised the possibility that the induced CSF may have required IL-1 to mediate their effects in the cultures. However, B lymphopoiesis was inhibited and myelopoiesis maintained upon addition of recombinant granulocyte-, macrophage-, and granulocyte-macrophage-CSF to cultures, indicating that IL-1 or other non-CSF molecules induced by it need not be present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Using long-term culture techniques, it has been shown that stromal cells in the marrow microenvironment are essential for the continued production and self-renewal of hematopoietic stem cells. We previously reported the development of a methylcellulose colony assay for a population of marrow stromal progenitors called CFU-RF. In this paper, a method is described for subculturing cells from individual CFU-RF-derived colonies to allow conditioned medium production (StCM). StCM, prepared in this way, was found to possess an erythroid lineage-specific activity that stimulated the formation of macroscopic erythroid colonies in cultures containing erythropoietin (epo). Using dose-response curves, the KG1 colony assay, and antibody neutralization, it was shown that the activity could not be attributed to interleukin 3 (IL3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). However, it was further shown that a monolayer of stromal cells, which had earlier been producing the erythroid activity, could be stimulated by IL1 to produce granulocytic colony-stimulating activity, but only as long as IL1 was present in the culture medium. These findings indicate a mechanism whereby the same stromal population could be modulated to promote growth and differentiation of different hematopoietic lineages.  相似文献   

10.
The stromal cell layer is believed to play an important role in long-term human bone marrow cultures (LTHBMCs). At present, neither the role that the stromal cell extra-cellular matrix (ECM) plays in influencing stroma behavior is well understood nor are the effects of stroma aging. Rapid medium exchanged LTHBMCs were established on surfaces precoated with human natural fibronectin and type 1 rat tail collagen. Although initial adhesion of hematopoietic cells was improved by the presence of both ECMs, the overall progenitor and nonadherent cell productivity was not improved nor did the stroma grow to confluency faster. Thus, the ECMs used did not significantly influence the cell productivity of LTHBMCs. To examine the influence of stromal cell layer aging, conditioned medium was obtained from the first two weeks of LTHBMCs that was subsequently concentrated and used as a medium supplement in a second set of slowly exchanged LTHBMCs. The presence of the concentrated conditioned medium (conCM) enhanced the production of nonadherent cells three-fold compared with control over an eight week culture period. Control cultures that were exposed to conCM after 4 weeks in culture significantly improved their cell productivity during the latter 4 weeks of culture compared with control. The productivity of cultures exposed to conCM for 4 weeks dropped significantly when unsupplemented medium was used for the latter 4 weeks of culture. Interestingly, phytohemagglutin-stimulated leukocyte-conditioned medium stimulated LTHMBCs in a similar fashion, as did conditioned medium from early LTHBMCs. Taken together, these results strongly suggest that the stromal cell layer does produce important factors for active hematopoiesis during its growth to confluence.  相似文献   

11.
Stromal cell lines derived from murine bone marrow support the growth of immature pre-B cells and produce cytokines that affect the growth and differentiation of other hematopoietic precursors. Conditioned medium (CM) from one such line (TC-1) stimulated marked proliferation of B cells previously activated by anti-Ig (anti-Ig blasts). Proliferation of anti-Ig blasts was not induced by purified cytokines known to be produced by TC-1 (CSF-1, GM-CSF, or G-CSF) or by IL-1, IL-2, IL-3, IL-4, IL-5, or IL-6. Furthermore, IL-2, IL-4, and IL-5, alone or in combination, failed to support proliferation or differentiation of anti-Ig blasts. TC-1 CM enhanced proliferation of B cells that were co-cultured with LPS, anti-Ig, or dextran sulfate; co-stimulation with anti-Ig was unaffected by the presence of monoclonal anti-IL-4. Proliferation of low, but not high, density B cells isolated from spleen was directly stimulated by TC-1 CM. These results suggest that bone marrow stromal cells produce a novel B cell stimulatory factor (BSF-TC) that induces proliferation of activated B cells.  相似文献   

12.
We have studied stromal cell function in naive or interleukin-1 (IL-1)-stimulated (100 pg/ml) long-term marrow cultures (LTC) from 12 normal donors and 21 patients with severe aplastic anemia (AA). Conditioned media (CM) from normal LTC contained levels of erythroid burst-promoting activity (BPA) and granulocyte/macrophage (GM) colony-stimulating activity (CSA) comparable to those previously described (Migliaccio et al., [1990] Blood, 75:305-312). The addition of IL-1 to these cultures increased the level of CSA and, specifically, of granulocyte colony-stimulating factor (G-CSF) released. Anti-GM-CSF antibody neutralized BPA and CSA in normal naive LTC CM but only the CSA in the CM from IL-1-stimulated LTC. Since the concentrations of GM-CSF, as detected with a specific immunoassay, did not increase after IL-1 treatment, these data suggest that IL-1-stimulated cultures contain an unidentified growth factor having BPA. CM from AA stromal cells contained levels of CSA comparable to those observed in normal stromal cell CM but had significantly lower levels of BPA. Neither anti-GM-CSF nor anti-IL-3 antibodies neutralized the BPA in AA stromal cell CM. This activity may be related to that found in the CM of IL-1-treated normal stromal cells. In nearly 50% of stromal cell cultures of AA patients, addition of IL-1 failed to increase the BPA, CSA, or G-CSF. The presence of an inhibitor in naive or IL-1-treated AA stromal cell CM was excluded by adding the CM to IL-3-stimulated cultures. These findings suggest that G-CSF and GM-CSF genes are differentially regulated in the marrow microenvironment. Furthermore, a marrow microenvironment, deficient in BPA production and, in some cases, unresponsive to IL-1 could contribute to marrow failure in some patients with AA.  相似文献   

13.
The stimulation of DNA synthesis in lymphocyte populations was previously shown to depend strongly on the intracellular glutathione (GSH) level. Since T cell growth is known to depend on interleukin 2 (IL-2), the experiments in this report were designed to determine whether intracellular GSH depletion may inhibit IL-2 production or the IL-2 dependent DNA synthesis. Our experiments revealed that IL-2 production and DNA synthesis of mitogenically stimulated splenic T cells have indeed different requirements for GSH. The addition of relatively high concentrations of GSH (5 mM) to cultures of concanavalin A (Con A)-stimulated splenic T cells was found to augment strongly the DNA synthesis but inhibited the production of IL-2. Moderate intracellular GSH levels, however, are apparently not inhibitory for IL-2 production, since intracellular GSH depletion by cysteine starvation or by graded concentrations of DL-buthionine sulfoximine (BSO) had virtually no effect on IL-2-specific mRNA expression and the production of T cell growth factor (TCGF). The DNA synthesis activity, in contrast, was strongly suppressed after GSH depletion with either method. As in cultures of splenic T cells, GSH depletion had no substantial effect on the induction of IL-2 mRNA and TCGF production in several mitogenically stimulated T cell clones. Taken together, our experiments suggest that complex immune response may operate best at intermediate GSH levels that are not too high to inhibit IL-2 production but sufficient to support DNA synthesis.  相似文献   

14.
The cDNA for stem cell factor was recently isolated from Buffalo rat liver cells (BRL-3A) and recombinant rat stem cell factor produced from Escherichia coli (rrSCF164). rrSCF164 synergizes with rhIL-7 to stimulate pre-B clonal growth in agar culture of mouse bone marrow cells, and in this study we have characterized the role of rrSCF164 in B cell development. The combination of rrSCF164 plus rhIL-7 stimulated increased colony numbers compared with the sum of colonies stimulated by rrSCF164 and rhIL-7 alone. Also, increased cell proliferation per colony was stimulated by the combination of rrSCF164 plus rhIL-7 compared with rhIL-7 or rrSCF164 alone. The colonies formed with rrSCF164 plus rhIL-7 and rhIL-7 alone contained exclusively pre-B cells, which expressed B220 Ag and cytoplasmic mu-chain, but were negative for surface Ig expression. Morphological examination of the cells in the colonies showed blast-like characteristics. rrSCF164 alone and in combination with rhIL-7 stimulated generation of B220+ cells in liquid culture of B220- cells, whereas rhIL-7 alone had no stimulatory effect on B220- cells. Both stem cell factor mRNA and bioactivity were detected in a mouse bone marrow-derived stromal cell line, termed OZ-11. We propose that stem cell factor is a stromal-derived factor that synergizes with IL-7 to stimulate the proliferation and differentiation of pro-B cells to pre-B cells, which become responsive to IL-7 alone.  相似文献   

15.
The effects of L-cell conditioned medium which contains granulocyte/macrophage colony stimulating factor (CSF); of highly purified L-cell CSF; and the antiserum directed against L-cell CSF, have been investigated in long-term murine bone marrow cultures. Treatment of cultures with CSF containing conditioned medium led to a rapid decline in haemopoiesis. However, this inhibition of in vitro haemopoiesis is probably caused by materials other than CSF, since the addition of highly purified L-cell CSF had no appreciable effect upon long-term haemopoietic cell proliferation or differentiation. Furthermore, the inhibitory activity of L-cell conditioned medium was not abrogated following neutralization of the CSF activity by CSF antiserum. The direct addition of CSF antiserum did not inhibit granulocyte or macrophage formation. These results suggest that long-term cultures of murine marrow cells may show extensive interactions with stromal cells which are not influenced by exogenous stimulatory or inhibitory factors.  相似文献   

16.
We have investigated the phenotypic and functional characteristics of murine pre-B cells obtained in semisolid and liquid culture with stem cell factor (SCF) and interleukin 7 (IL-7). Both serum-supplemented and serum-deprived culture conditions were used. The source of bone marrow cells was either normal mice (CD1 and C3H) or the lupus strain of mice MRL/Ipr and its congenic strain MRL/+. SCF (100 ng/ml) and IL-7 (250 ng/ml) supported murine B cell proliferation in vitro from all the murine strains analyzed both in serum-supplemented and serum-deprived conditions. Maximal colony growth was observed in both cases when the factors were used in combination. The growth factors alone induced some colony growth in serum-supplemented cultures but were either ineffective or had modest activity in serum-deprived cultures. Cells harvested from the colonies or generated in liquid cultures and stimulated with SCF + IL-7 in the absence of serum had almost exclusively a pre-B cell phenotype (BP-1+, B220+, slg-, CD4-, CD8-, Mac-1, RB-6-). Both the maximal colony growth in semisolid culture and the maximal number of cells in liquid culture were observed at day 12–14. At this time, the pre-B cells failed to differentiate further and started to die. Pre-B cells generated in vitro were, however, capable of differentiating in vivo. SCID mice injected with 2 × 106 pre-B cells had readily detectable serum levels of IgM (54 ± 26 m?g/ml) and IgG (60 ± 95 m?g/ml) at 4 weeks and 6 weeks posttransplantation, respectively. Mature B and T cells of the donor major histocompatibility complex type were detected in the SCID mice at sacrifice 14 weeks posttransplantation. These data indicate that purified (>80% BP-1+) populations of functional pre-B cells can be grown from murine bone marrow of normal mice as well as of lupus mice in serum-deprived cultures stimulated with SCF and IL-7. These cultures, therefore, provide a highly enriched source of pre-B cells but also contain T cell precursors that differentiate upon adoptive transfer into SCID mice. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Xyloside supplementation of long-term bone marrow cultures (LTBMCs) has been reported to result in greatly enhanced proliferation of hematopoietic stem cells. This was presumed to be the result of xyloside-mediated perturbation of proteoglycan synthesis by marrow-derived stromal cells. To investigate this phenomenon, we first studied the effects of xyloside supplementation on proteoglycan synthesis by D2XRadII bone marrow stromal cells, which support hematopoietic stem cell proliferation in vitro. D2XRadII cells were precursor labelled with 35S-sulfate, and proteoglycans separated by ion exchange chromatography, isopyknic CsCl gradient centrifugation, and gel filtration HPLC. Xyloside-supplemented cultures showed an approximately fourfold increase in total 35S incorporation, mainly as free chondroitin-dermatan sulfate (CS/DS) glycosaminoglycan chains in the culture media. Both xyloside supplemented and nonsupplemented cultures synthesized DS1, DS2, and DS3 CS/DS proteoglycans as previously described. In contrast to previous reports, xyloside was found to inhibit hematopoietic cell growth in LTBMC. Inhibitory effects were observed both in cocultures of IL-3-dependent hematopoietic cell lines with supportive stromal cell lines and in primary murine LTBMCs. Xyloside was found to have a marked inhibitory effect on the growth of murine hematopoietic stem cells and IL-3-dependent hematopoietic cell lines in clonal assay systems and in suspension cultures. In contrast, dialyzed concentrated conditioned media from LTBMCs had no such inhibitory effects. These findings suggest that xyloside-mediated inhibition of hematopoietic cell growth in LTBMC resulted from a direct effect of xyloside on proteoglycan synthesis by hematopoietic cells.  相似文献   

18.
P Hunt  D Robertson  D Weiss  D Rennick  F Lee  O N Witte 《Cell》1987,48(6):997-1007
A clonal cell line (ALC) derived from murine bone marrow stroma is capable of supporting the continuous, in vitro growth of early lymphoid and myeloid cell populations. The growth-promoting effects of ALC are in part mediated through M-CSF and a pre-B cell growth factor, both of which accumulate in ALC-culture supernatant. To analyze the lymphoid growth factor produced by ALC cells, we derived a pre-B cell indicator line that is dependent on ALC-growth-conditioned medium. Using a combination of biological and biochemical analyses, we have established that the pre-B cell growth factor produced by ALC cells is distinct from IL-1, IL-2, IL-3, and IL-4 (BSF-1), suggesting that the early stages of B-cell development are regulated by a unique stroma-derived growth factor.  相似文献   

19.
20.
Bone marrow stromal cell lines have been isolated that directly support B lymphopoiesis in vitro. Single B-lineage precursors proliferate and differentiate on certain of these stromal cell lines to establish long-term B-lineage cultures. These lymphopoietic stromal cells produce novel soluble factors that support proliferation of in vitro established pre-B cell populations. Lymphoid populations established on lymphopoietic stromal cell lines lack surface Ig-bearing cells, but give rise to surface Ig+ cells when transferred to mixed bone marrow feeder layers. Several stromal lines expressed a B-lineage neoplasia marker detected by the monoclonal antibody MAb6C3. Remarkably, only the 6C3Aghi stromal lines supported long-term proliferation of B-lineage cells. We propose that the 6C3 antigen-bearing molecule may play a role in stromal cell-dependent, pre-B cell proliferation, as well as in neoplastic proliferation of pre-B leukemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号