首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genes of Rhizobium leguminosarum bv. viciae VF39 coding for the regulatory elements NifA, FixL and FixK were isolated, sequenced and genetically analysed. The fixK–fixL region is located upstream of the fixNOQP operon on the non-nodulation plasmid pRleVF39c. The deduced amino acid sequence of FixL revealed an unusual structure in that it contains a receiver module (homologous to the N-terminal domain of response regulators) fused to its transmitter domain. An oxygen-sensing haem-binding domain, found in other FixL proteins, is conserved in R. leguminosarum bv. viciae FixL. R. leguminosarum bv. viciae possesses a second fnr -like gene, designated fixK , whose encoded gene product is very similar to Rhizobium meliloti and Azorhizobium caulinodans FixK. Individual R. leguminosarum bv. viciae fixK and fixL insertion mutants displayed a Fix+ phenotype. A reduced nitrogen-fixation activity was found for a R. leguminosarum bv. viciae fnrN -deletion mutant, whereas no nitrogen-fixation activity was detectable for a fixK / fnrN double mutant. The R. leguminosarum bv. viciae nifA gene is expressed independently of FixL and FixK under aerobic and microaerobic conditions, whereas fixL gene expression is induced under microaerobiosis. Another orf was identified downstream of fixK–fixL and encodes a product which has homology to pseudoazurins from different species. Mutation of this azu gene showed that it is dispensable for nitrogen fixation.  相似文献   

4.
The nifA gene has been identified between the fixX and nifB genes in the clover microsymbiont Rhizobium leguminosarum biovar trifolii (R.I. bv. trifolii) strain ANU843. Expression of the nifA gene is induced in the symbiotic state and site-directed mutagenesis experiments indicate that nifA expression is essential for symbiotic nitrogen fixation. Interestingly, the predicted R.I. bv. trifolii NifA protein lacks an N-terminal domain that is present in the homologous proteins from R.I. bv. viciae, Rhizobium meliloti, Bradyrhizobium japonicum, Klebsiella pneumoniae and all other documented NifA proteins. This indicates that this N-terminal domain is not essential for NifA function in R.I. bv. trifolii.  相似文献   

5.
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.  相似文献   

6.
The nifA gene of Rhizobium meliloti is oxygen regulated.   总被引:35,自引:19,他引:16       下载免费PDF全文
Experiments using plasmid-borne gene fusions and direct RNA measurements have revealed that expression from the nifA gene is induced in Rhizobium meliloti when the external oxygen concentration is reduced to microaerobic levels. Induction occurs in the absence of alfalfa and in the presence of fixed nitrogen and does not require ntrC. The production of functional nifA gene product (NifA) can be demonstrated by its ability to activate the nitrogenase promoter P1. Aerobic induction of nifA can also occur during nitrogen starvation at low pH, but in this case induction is dependent on ntrC and does not lead to P1 activation. The data indicate that reduced oxygen tension is potentially a major trigger for symbiotic activation of nitrogen fixation in Rhizobium species.  相似文献   

7.
8.
The nucleotide sequence of the Azorhizobium caulinodans ORS571 nifA locus was determined and the deduced NifA amino acid sequence compared with that of NifA from other nitrogen-fixing species. Highly conserved domains, including helix-turn-helix and ATP-binding motifs, and specific conserved residues, such as a cluster of cysteines, were identified. The nifA 5' upstream region was found to contain DNA sequence motifs highly homologous to promoter elements involved in nifA/ntr-mediated control and a consensus element found in the 5' upstream region of the Bradyrhizobium japonicum 5-aminolevulinic acid synthase (hemA) gene and of Escherichia coli genes activated during anaerobiosis via the fnr (fumarate nitrate reduction) control system. A nifA-lac fusion was constructed using miniMu-lac and its activity measured in different genetic backgrounds and under various physiological conditions (in culture and in planta). NifA expression was found to be negatively autoregulated, repressed by rich nitrogen sources and high oxygen concentrations, and controlled (partially) by the ntrC gene, both in culture and in planta. DNA supercoiling was also implicated in nifA regulation, since DNA gyrase inhibitors severely repressed nifA-lac expression.  相似文献   

9.
10.
The nifA gene is an important regulatory gene and its product, NifA protein, regulates the expression of many nif genes involved in the nitrogen fixation process. We introduced multiple copies of the constitutively expressed Sinorhizobium meliloti (Sm) or Enterobacter cloacae (Ec) nifA gene into both the nifA mutant strain SmY and the wild-type strain Sm1021. Root nodules produced by SmY containing a constitutively expressed Sm nifA gene were capable of fixing nitrogen, while nodules produced by SmY containing the EC nifA gene remained unable to fix nitrogen, as is the case for SmY itself. However, transfer of an additional Sm nifA gene into Sm1021 improved the nitrogen-fixing efficiency of root nodules to a greater extent than that observed upon transfer of the EC nifA gene into Sm1021. Comparative analysis of amino acid sequences between Sm NifA and EC NifA showed that the N-terminal domain was the least similar, but this domain is indispensable for complementation of the Fix-phenotype of SmY by Sm Ni  相似文献   

11.
12.
13.
14.
15.
16.
17.
The deduced amino acid sequence derived from the sequence of a fragment of DNA from the free-living diazotroph Herbaspirillum seropedicae was aligned to the homologous protein sequences encoded by the nifA genes from Azorhizobium caulinodans, Rhizobium leguminosarum, Rhizobium meliloti and Klebsiella pneumoniae. High similarity was found in the central domain and in the C-terminal region. The H. seropedicae putative NifA sequence was also found to contain an interdomain linker similar to that conserved among rhizobial NifA proteins, but not K. pneumoniae or Azotobacter vinelandii. Analysis of the regulatory sequences found 5' from nifA indicated that the expression of this gene in H. seropedicae is likely to be controlled by NifA, NtrC and RpoN, as judged by the presence of specific NifA- and NtrC-binding sites and characteristic -24/-12 promoters. Possible additional regulatory features included an 'anaerobox' and a site for integration host factor. The N-terminus of another open reading frame was found 3' from nifA and tentatively identified as nifB by amino acid sequence comparison. The putative nifB promoter sequence suggests that expression of H. seropedicae nifB may be activated by NifA and dependent on RpoN.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号