首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Half-life (t12), volume of distribution (Vd)_and total body clearance (TBC) of 13, 14-dihydro-15-keto PGF (PGFM) were measured in order to determine optimal sampling frequency for accurate measurement of PGFM. Three yearling Holstein bulls (349.2 ± 6.7 kg) and 3 yearling Holstein steers (346.7 ± 7.0 kg) were utilized in a 3 × 3 Latin square design. Animals were given 0, 25 or 50 μg PGF I.V.; blood samples collected every 2 min and plasma PGFM determined. The t12, Vd and TBC of PGFM were 2.3 ± .2 min, 43.3 ± 3.3 liters and 13.7 ± 1.9 liters/min, respectively and were similar for 25 and 50 μg doses. To determine the relationship between endogenous PGFM and LH secretion in bulls, blood samples were collected every 2 min for 12 h in 4 yearling Angus bulls (489.1 ± 11.6 kg). All animals elicited at least one LH surge and PGFM concentrations were measured in samples coincident with the LH surge. Mean plasma PGFM concentrations were greater prior to the LH surge than during the LH surge. In addition, mean plasma PGFM concentration and frequency of PGFM peaks appeared to increase prior to the LH surge suggesting an association between PGFM and pulsatile LH secretion in the bull.  相似文献   

2.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

3.
Forty-four crossbred postpubertal bovine females were used to study how mating with a bull affected estradiol-17beta (E(2)) secretion and timing of the preovulatory LH surge. Estrous cycles were synchronized with two injections of prostaglandin-F(2alpha) (PGF(2alpha)) 11 d apart. Females were either isolated from males (NE) or exposed to epididectomized bulls (BE) after the second PGF(2alpha) injection. Females exposed to bulls were allowed to mate once and then were separated from the bull. Blood samples were collected at 2-h intervals from the second PGF(2alpha) injection until 12-h post injection to monitor progesterone (P(4)) and luteinizing hormone (LH) concentrations and at hourly intervals from 12 h to 60 h post-injection to monitor LH secretion and timing of the preovulatory LH surge. Samples were also collected at 4-h intervals until 60 h post-injection to monitor estrogen (E(2)) secretion. LH surges were detected in 16 and 14 of 22 females from the BE and NE groups, respectively, during the 60-h period after PGF(2alpha) injection Mean P(4) concentrations and time of P(4) decline to <1 ng/ml were not different between the two treatment groups (P>0.30). Mean E(2) concentration during the 60-h sampling period was different (P<0.003) between BE and NE groups, and a significant treatment effect (P<0.002) occurred 48 h, 52 h and 60 h after the second PGF(2alpha) injection. However, mean LH concentration before the LH surge, duration of the LH surge and peak LH concentration during the surge were not different between the BE and NE groups (P>0.40). Mean time for the second PGF(2alpha) injection to the beginning of the LH surge was 51.6 +/- 1.5 h (X +/- S E) for the females not exposed to bulls and 48.5 +/- 1.4 h for females exposed to bulls (P>0.14). In this study, the presence of and/or mating by a bull did not affect LH secretion or timing of the preovulatory LH surge after PGF(2alpha) administration.  相似文献   

4.
The effect of exogenous melatonin on prostaglandin secretion was measured on Rasa Aragonesa ewes. Fourteen ewes received an 18 mg melatonin implant (M+) on 10 April and were compared with 13 control animals (without implants M-). Twenty days later, intravaginal pessaries were inserted in all animals to induce a synchronized oestrus (day 0). On day 14, ewes were injected, i.v., with 0.5 IU oxytocin. Plasma 15-ketodihydro-PGF(2alpha) (PGFM) concentrations were measured to assess uterine secretory responsiveness to oxytocin. After euthanasia, pieces of endometrium were collected to determine progesterone content and PGE(2) and PGF(2alpha) secretion in vitro, in the presence or absence of either 20 microg/ml recombinant ovine interferon-tau (roIFNt) or 1 nmol/l oxytocin in the medium. Endometrial progesterone content was similar in the two treatments (M+: 50.25+/-17.34 ng/mg tissue, M-: 43.08+/-11.21 ng/mg tissue). M+ ewes that responded to oxytocin had significantly higher plasma PGFM concentrations between 10 and 80 min after oxytocin administration, a higher mean PGFM peak (P<0.001), higher plasma PGFM levels after the challenge (P<0.05) and higher plasma progesterone concentrations (P<0.01) than control ewes. In the in vitro experiment, M+ and M- control samples secreted similar amounts of PGE(2). The presence of roIFNtau and oxytocin only stimulated PGE(2) production (P<0.05) in M- tissues. Control M+ tissues secreted higher amounts of PGF(2alpha) (P=0.07) and PGF(2alpha) secretion was significantly (P<0.01) stimulated by roIFNtau. Oxytocin produced this effect only in M- samples (P<0.01). In conclusion, although previous studies have demonstrated a positive effect of melatonin on lamb production, PGF(2alpha) secretion is higher in vitro and the PGE(2):PGF(2alpha) ratio is unfavourable in response to IFNtau, which could affect embryo survival. Whether or not these mechanisms are similar in pregnant ewes remains to be elucidated.  相似文献   

5.
On day 17 postestrus or postmating, heifers were given intrauterine injections of saline (2 pregnant, 2 non-pregnant) or 200 micrograms PGF2 alpha (7 pregnant, 6 nonpregnant) through cannulae installed surgically into the uterine horn ipsilateral to the corpus luteum bearing ovary. Jugular blood samples were collected prior to the laparotomy at which the cannulae were installed during surgery, and for 90 min following the intrauterine injection. Plasma was assayed for progesterone and 13,14-dihydro-15-keto-PGF2 alpha (PGFM). Laparotomies were reopened to confirm proper cannula placement and to determine if blastocysts were present in mated heifers. Concentrations of PGFM were higher in pregnant compared to nonpregnant heifers during the presurgery (68 +/- 26 vs 24 +/- 26 pg/ml; P less than .025) and surgery (186 +/- 47 vs 65 +/- 17 pg/ml; P less than .05) periods. Pregnancy status did not alter the mean concentrations of PGFM (pregnant, 554 +/- 70 pg/ml; nonpregnant, 422 +/- 81 pg/ml) or the half-life of its decline in concentration (18 min) following intrauterine injection of PGF2 alpha. Pregnancy at 17 days in cattle does not appear to influence PGF2 alpha transport from the uterine lumen or its metabolism in the uterus or elsewhere in response to an acute intrauterine injection.  相似文献   

6.
When administered systemically, oxytocin (OT) stimulates secretion of uterine prostaglandin F2alpha (PGF2alpha) in swine, but the role of endometrially-derived OT in control of PGF2alpha release is not clear. This study determined the effect of exogenous OT, administered into the uterine lumen of intact cyclic gilts, on PGF2alpha secretion during late diestrus. Intrauterine infusion of 40USP units OT (in 30 ml 0.9% saline) was performed for 30 min (1 ml/min) into each uterine horn between 7:00 and 9:00 h on days 10, 12, 14 and 16 after estrus. Beginning 20 min before infusion, samples of jugular venous blood were drawn at 5-10-min intervals for 140 min for quantification of 13,14-dihydro-15-keto-PGF2alpha (PGFM), the major stable metabolite of PGF2alpha. Progesterone was analyzed in samples collected 0, 60 and 120 min after initiation of OT infusion. Treatment with OT did not alter plasma concentrations of PGFM on days 10 or 12 but decreased (P<0.001) PGFM concentrations for 40 min after onset of infusion on day 16. Concentrations of PGFM also were reduced in the pre-treatment samples on day 14 (P=0.05) and day 16 (P<0.001) in OT-infused gilts. Plasma progesterone declined (P<0.01) between days 10 and 16 in control-infused gilts but did not decline until after day 14 (P<0.001) in gilts infused with OT. These results indicate that when OT is administered into the uterine lumen of pigs during late diestrus, it has an anti-luteolytic effect to reduce endocrine secretion of PGF2alpha and delay the decline in progesterone that occurs during luteolysis.  相似文献   

7.
The theory of countercurrent vascular transfer of PGF2 alpha during luteolysis was examined. In the first experiment, pulmonary clearance of PGF2 alpha was determined to re-examine whether the total amount of PGF2 alpha was degraded in the lungs after one passage. Cardiac output was measured by the Fick method and PGF2 alpha by radio-immunoassay before and after vascular lung supply, using pulmonary catheterization and the interventional radiology method in ten anaesthetized ewes on day 16 of the oestrous cycle. Cardiac output remained stable (7156 +/- 439 ml min-1). Infusion of 5 iu oxytocin resulted in an increase in plasma PGF2 alpha concentrations at 30 min in the uterine vein and the pulmonary and femoral arteries (3811 +/- 806, 224 +/- 55 and 18 +/- 4 pg ml-1, respectively). The PGF2 alpha concentrations decreased exponentially and the half-time decreases were 27 (r = 0.99), 16 (r = 0.99) and 18 (r = 0.98) min, respectively. Pulmonary clearance of PGF2 alpha was estimated at 6338 +/- 451 ml min-1. In a second experiment, an arterio-arterial gradient of plasma PGF2 alpha concentrations was analysed between the proximal and distal segments of the ovarian artery to verify whether the total amount of PGF2 alpha flowing to the ovary was from the local venous-arterial countercurrent pathway. Surgical catheterization techniques were performed on 11 ewes on day 16 of the oestrous cycle. The ovarian arterial blood flow was measured by the implantable Doppler method (8 +/- 1 ml min-1). The maximum plasma PGF2 alpha concentrations in the femoral and distal ovarian arteries were 23 +/- 6 and 42 +/- 11 pg ml-1 (P < 0.05), respectively. Plasma PGF2 alpha decreased exponentially in the femoral artery and the half-time decrease was 26 min (r = 0.98), and in the distal ovarian artery close to the ovary PGF2 alpha decreased linearly and the half-time decrease was 108 min (r = 0.96). Consequently, the arterio-arterial diffusion gradient of PGF2 alpha concentrations was extended to 3 h. These experiments showed that the PGF2 alpha flow rate in the pulmonary artery was 42.275 +/- 10.793 micrograms per 150 min (n = 10) and the systemic arterial PGF2 alpha flow rate was 5.359 +/- 1.658 micrograms per 150 min (n = 10). Therefore, 12% of the PGF2 alpha was not oxidized by the lungs. The proximal ovarian PGF2 alpha flow rate was 6.909 +/- 2.341 ng per 150 min, while the distal flow rate was 21.003 +/- 5.703 ng per 150 min (n = 11). Thus, 33% of the PGF2 alpha was transported rapidly to the ovary via the systemic route, while 67% was transported by slow local countercurrent diffusion, which extended the duration of luteolytic activity to four times that of the PGF2 alpha surge. These results indicate both rapid systemic transport of PGF2 alpha to the ovaries and a slower buffer mechanism involving a local diffusion pathway, rather than a direct countercurrent system.  相似文献   

8.
Prostaglandin F(2alpha) (PGF(2alpha)) plays a role in the regression of the corpus luteum (CL) in a number of placental mammals. However, the mechanism of luteal regression has not been extensively studied in marsupials. The objectives of this study were to characterize changes in concentrations of PGF(2alpha) within utero-ovarian (UO) tissue/venous plasma during the luteal phase of the estrous cycle in Virginia opossums, to correlate these changes with those of plasma progesterone (P(4)), and to characterize the peripheral pattern of 13,14-dihydro-15-keto-PGF(2alpha) (PGFM) in parturient opossums. Ovaries, uteri, UO venous plasma and peripheral plasma were collected on Days 5, 9 and 12 after induced ovulation (n = 3 to 4 opossums/group). In addition, concentrations of PGFM were measured in peripheral plasma collected from two opossums during late gestation (Days 7,9,11 and 12) and at parturition (Day 13). Concentrations of P(4), PGFM and PGF(2alpha) in tissue homogenates and plasma samples were estimated by radioimmunoassay. In nonpregnant opossums, peripheral P(4) levels were highest on Day 5 (38.8 +/- 11.1 ng/ml, x +/- SEM) declined on Day 9 (22.6 +/- 7.4 ng/ml), and were at basal levels by Day 12 (2.4 +/- 0.7 ng/ml). Endometrial concentrations of PGF(2alpha) increased (P = 0.056) from Day 5 (15.7 +/- 4.1 ng/g) to Day 9 (92.1 +/- 61.0 ng/g) and were maintained to Day 12 (97.2 +/- 25.7 ng/g). Prostaglandin F(2alpha) concentrations in UO plasma increased (P < 0.01) from Day 5 (143.1 +/- 32.7 pg/ml) to Day 12 (333.0 +/- 32.4 pg/ml). Prostaglandin F(2alpha) concentrations in ovarian tissue followed a similar pattern and were correlated with UO concentrations (r = 0.708, P < 0.05). In pregnant opossums, the highest levels of peripheral PGFM were recorded in the peripartum period, when luteal regression would also be expected to occur. The negative temporal relationship between peripheral concentrations of P(4) and concentrations of PGF(2alpha) in UO tissue/venous plasma observed in this preliminary study is consistent with the notion that PGF(2alpha) from the ovary and/or uterus may play a role in CL regression in the opossum.  相似文献   

9.
We investigated transpulmonary enzymatic conversion of prostaglandin F2 alpha (PGF) to the 13,14-dihydro-15-keto metabolite (PGFM) in normal and acutely lung injured sheep. PGF was infused directly into the right ventricle. Sequential, simultaneous blood samples were drawn from the pulmonary artery (PA) and aorta (A). PGF and PGFM plasma concentrations were quantitated by double antibody radioimmunoassay (RIA). The pulmonary conversion rate of PGF in normal lung was established over a wide range of concentrations in intubated, normoxic, and hemodynamically stable sheep. Both zero and first order kinetics were present. PGF had no physiological effects on either pulmonary or systemic hemodynamics at any infusion rate studied. Acute lung injury was produced by intravenous injections of oleic acid into the PA until the resting mean pulmonary artery pressure doubled. Infusions were then repeated and fractional metabolism of PGF across the lung was assessed. PGF, at infusion rates of 2 micrograms/kg/min and 8 micrograms/kg/min, was metabolized greater than 70% respectively. Thus, there was no difference between control or experimental groups in PGF conversion. We conclude that the in vivo sheep lung has an extensive substrate-dependent capacity to metabolize PGF and this mechanism is resistant to severe acute oleic acid lung injury.  相似文献   

10.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

11.
To test the endocrine-exocrine theory of maternal recognition of pregnancy in the pig 16 gilts were assigned randomly to a 2 X 2 factorial involving pretreatment with sesame oil (SO) or estradiol valerate (5 mg; EV) injected on Days 11 through 14 of the estrous cycle and an intrauterine injection of saline (5 ml; SA) or prostaglandin F2 alpha (50 micrograms; PGF) on Day 14. Peripheral blood samples were collected for 120 min postinjection and analyzed for 15-keto-13,14-dihydro-PGF2 alpha (PGFM). PGFM concentrations were lower in EV than SO gilts (438 vs. 844 pg/ml; p less than 0.05). There was heterogeneity of regression between EV and SO gilts (p less than 0.01), with EV gilts having a slower release of PGF from the uterine lumen into the vasculature. Prostaglandin F2 alpha did not increase mean PGFM concentrations (p greater than 0.10), but resulted in an altered temporal pattern of PGFM (p less than 0.05) compared to SA gilts. There was an interaction between the two treatments over time, with EV-PGF gilts demonstrating a slower, more gradual release of PGFM than SO-PGF gilts. To test whether prostaglandins of the E series were involved in this mechanism, gilts were assigned to two 4 X 4 latin squares balanced for residual effects and treated with saline or flunixen meglumine (Banamine). Each gilt was treated with four PGE:PGF infusion sequences (SEQ) in each uterine horn: phosphate-buffered saline (PBS; PBS-SEQ), PGE1 (50 micrograms), PGE2 (50 micrograms), and PGE1 (25 micrograms) + PGE2 (25 micrograms) (PGE-SEQ), with each infusion followed 15 min later by PGF (25 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The aim of this study was to determine the effect of oxytocin on PGF2 alpha secretion into the uterine lumen of pigs and subsequent endometrial responsiveness to oxytocin in vitro. Cyclic, pregnant and oestradiol-induced pseudopregnant gilts were injected i.v. with vehicle or 20 iu oxytocin 10 min before hysterectomy on day 16 after oestrus. Concentrations of PGF2 alpha and 13,14-dihydro-15-keto PGF2 alpha (PGFM) were significantly increased in uterine flushings collected at hysterectomy (P < 0.05) in pregnant oxytocin-injected gilts. Concentrations of PGF2 alpha and PGFM were greater (P < 0.001) in pregnant than in pseudopregnant and cyclic gilts, and greater (P < 0.01) in pseudopregnant than in cyclic gilts. The ratio of PGFM:PGF2 alpha tended to be greater in cyclic (P < 0.06) and pseudopregnant gilts (P < 0.1) than in pregnant gilts. At 85 +/- 5 min after oxytocin injection, endometrium from each gilt was incubated for 3 h for determination of phosphoinositide hydrolysis and PGF2 alpha secretion in response to treatment with 0 or 100 nmol oxytocin l-1. Endometrial phosphoinositide hydrolysis in response to 100 nmol oxytocin l-1 in vitro was greater (P < 0.05) in cyclic oxytocin-injected gilts than in cyclic vehicle-injected gilts. Treatment with oxytocin in vitro did not stimulate phosphoinositide hydrolysis significantly in vehicle- or oxytocin-injected pregnant gilts or pseudopregnant gilts. Endometrial PGF2 alpha secretion increased after treatment with 100 nmol oxytocin l-1 in vitro in cyclic vehicle-injected (P < 0.01), cyclic oxytocin-injected (P < 0.01), pregnant vehicle-injected (P = 0.06), pseudopregnant vehicle-injected (P < 0.05) and pseudopregnant oxytocin-injected (P < 0.05) gilts, but not in pregnant oxytocin-injected gilts. The increase in PGF2 alpha in pseudopregnant oxytocin-injected gilts was less (P < 0.05) than that in cyclic oxytocin-injected gilts. These results indicate that oxytocin increases the concentration of PGF2 alpha and PGFM in the uterine lumen during pregnancy and may upregulate endometrial responsiveness to oxytocin during late dioestrus in pigs, but does not have the latter effect during early pregnancy or oestradiol-induced pseudopregnancy.  相似文献   

13.
The effect of pregnancy on the release of prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin (OT) has been examined. Fourteen cyclic heifers received one intravenous injection of 1 IU OT (n = 6) or 100 IU OT (n = 8) 17, 18, or 19 days (Day 17-19) after the onset of estrus (Day 0). Five of these animals also received 100 IU OT at Days 6 and 13 to determine the effect of OT at different times of the cycle. Frequent blood samples were taken for 60 min before and for 90 min after OT injection for the measurement of 15-keto-13,14-dihydro-PGF2 alpha (PGFM) by radioimmunoassay. The experiment was then repeated using the same animals at Day 17-19 of pregnancy (confirmed by the recovery of an embryo the day after OT injection). Following the injection of 1 IU OT, plasma PGFM reached its peak within 30 min with the increase significantly lower (P less than 0.05) in pregnant (1.13 +/- 0.10-fold) than in nonpregnant animals (2.07 +/- 0.27-fold). However, because only 3 of the 6 cyclic animals showed a response to 1 IU OT, the dose was increased to 100 IU in subsequent experiments. The animals that received 100 IU at Days 6 and 13 had no significant increase in PGFM concentrations (1.18 +/- 0.05-fold and 1.01 +/- 0.04-fold, respectively). At Day 17-19 the increase in plasma PGFM reached its peak 5-15 min after 100 IU OT and the increase was significantly greater in nonpregnant (3.23 +/- 0.17-fold) than in pregnant (1.21 +/- 0.02-fold; P = 0.003) heifers. Six of 11 animals injected at Day 17-19 of the cycle showed a decrease in progesterone (P4) the day after OT administration. These data show that the release of PGF2 alpha in response to OT is suppressed in pregnant animals in vivo, suggesting an antiluteolytic role for the embryo in luteostasis.  相似文献   

14.
Explants from term human placentas were maintained in culture with daily changes of medium. Daily output of PGF2 alpha and PGFM1 decreased during the course of the incubation. Addition of 4 micrograms/ml DHEAS or 67 micrograms/ml LDL cholesterol had no effect on output of PGF2 alpha or PGFM. Addition of 1.6, 3.2, or 6.4 micrograms/ml of LHRH to the culture plates had no effect on output of PGFM or PGF2 alpha, but LHRH increased hCG output. Dibutyryl cAMP (1mM, 2mM, and 4 mM) increased output of PGF2 alpha, PGFM, and hCG. Aromatase inhibitor decreased hCG output, but it was without effect on output of PGF2 alpha, or PGFM, Significant correlations were demonstrated between progesterone, PGFM, PGF2 alpha, and hCG, suggesting that PGF2 alpha originates in the syncytiotrophoblast cell. The ability of LHRH to stimulate output of hCG but not PGF2 alpha while dbcAMP stimulated both suggests that either PGF2 alpha and hCG arise in different cells or that LHRH does not act through cAMP.  相似文献   

15.
In Exp. I, 0.5 mg oestradiol or vehicle (0.5 ml absolute ethanol + 0.5 ml 0.9% NaCl) was injected i.v. at 08:00 h on Day 14 (onset of oestrus = Day 0). Blood samples were obtained via a jugular catheter at 30 and 1 min before oestradiol and every 30 min for 10 h afterwards. Plasma was obtained and assayed for 15-keto-13,14-dihydro-PGF-2 alpha (PGFM) by radioimmunoassay. Before oestradiol, PGFM basal values were higher (P less than 0.01) in pregnant (N = 10) than nonpregnant (N = 6) ewes (193 +/- 30 vs 67 +/- 8 pg/ml). However, at 4-10 h after oestradiol, pregnant ewes (N = 5) had less variable (P less than 0.01) PGFM values than did nonpregnant ewes (N = 5). In Exp II, conceptus secretory proteins (CSP) were obtained by pooling medium from cultures of Day-16 sheep conceptuses (N = 40). Ewes received 750 micrograms CSP + 750 micrograms plasma protein (N = 6) or 1500 micrograms plasma protein (N = 6) per uterine horn at 08:00 h and 18:00 h on Days 12-14. All ewes received 0.5 mg oestradiol at 08:00 h on Day 14 and blood samples were collected as in Exp. I and assayed for PGFM. On Day 15, 3 ewes in each group received 10 i.u. oxytocin and 3 received saline i.v. at 08:00 h and blood samples were taken continuously from 10 min before to 60 min after treatment. Mean PGFM response to oestradiol was suppressed (P = 0.05) in CSP- vs plasma protein-treated ewes (371 +/- 129 vs 1188 +/- 139 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Henderson and McNatty (Prostaglandins 9:779, 1975) proposed that LH from the preovulatory LH surge attached to receptors on luteal cells and that this attachment might protect the early corpus luteum from PGF2alpha induced luteolysis. To test this hypothesis, experiments were performed on heifers at day 10-12 of the cycle. Both jugular veins were catheterized and infusions of either saline (0.64 ml/min) or LH-NIH-B9 (10 microgram/min; 0.64 ml/min) were given. Saline infusions were from 0-12 h; LH infusions were for 10 h and were preceded by a 2 h saline infusion. All animals were given 25 mg PGF2alpha im at 6 h (6 h into the saline infusion and 4 h into the LH infusion). Blood samples were taken at 0.5 h, 1 h and 4 h intervals from 0-12h, 13-18 h and 12-42 h respectively. Serum was assayed for LH and progesterone by radioimmunoassay methods. Two animals received saline and two received LH in each experiment. Each treatment was replicated 6 times. LH infusion resulted in a mean serum LH of 75 ng/ml compared to 0.90 ng/ml in saline infused animals. This elevation of LH did not alter PGF2alpha induced luteolysis as indicated by decline in serum progesterone. This experiment does not support the hypothesis that the newly formed corpus luteum is resistant to PGF2alpha because of protection afforded by the proestrus LH surge.  相似文献   

17.
The effects of acute heat stress (HS) and oxytocin (OT) injection on plasma concentrations of PGF2alpha and OT were examined in cyclic (C; n = 15) and pregnant (P; n = 11) dairy heifers. On Day 17 of synchronized estrous cycles, animals were randomly assigned to either thermoneutral (TN; 20 degrees C, 20% RH) or HS (42 degrees C, 60% RH) chambers. The jugular vein of each heifer was cannulated and blood samples collected hourly for 4 h, then every 15 min for an additional 3 h. Oxytocin (100 IU) was injected (IV) 5 h after the start of blood collection. Plasma samples were assayed subsequently for concentrations of 13,14-dihydro-15-keto PGF2alpha (PGFM) and OT. During the 7-h experiment, body temperature of HS heifers reached 41.2 degrees C as compared to 38.5 degrees C in control heifers. Plasma concentrations of PGFM increased (P<0.05) and peaked 30 min after OT injection in C (890 pg/ml) and P (540 pg/ml) heifers. In C heifers, heat stress failed to alter PGFM concentrations either before or after OT injection. In the P group, PGFM concentrations following OT injection tended to be higher in HS heifers were further TN heifers (peak values of 690 vs. 410 pg/ml). Pregnant TN and HS heifers were further classified as responders or non-responders to OT challenge according to a cutoff value for PGFM of 193 pg/ml (overall mean of C heifers minus 1 SD). Five of six HS and one of five TN pregnant heifers were classified as responders (P<0.06). Oxytocin concentrations in plasma prior to injection of exogenous OT were not affected by HS or pregnancy status. It is concluded that in C heifers, acute HS in vivo does not cause any further rise in PGF2alpha secretion. However, in P heifers, HS appears to antagonize suppressive effects of the embryo on uterine secretion of PGF2alpha, as indicated by the larger proportion of P heifers responding to OT challenge.  相似文献   

18.
A pulse of a PGF2α metabolite (PGFM) was induced by treatment with 0.1 mg of estradiol-17β on Day 15 (Day 0=ovulation; n=9 heifers). Blood samples were taken every 15 min for 9h beginning at treatment (Hour 0). For PGFM and LH, an intraassay-CV method was used to detect fluctuations in the 15-min samples and pulses in the hourly samples. A mean of 6.9 ± 0.4 PGFM fluctuations/9 h were superimposed on the hourly PGFM concentrations, compared to 2.1 ± 0.5 LH fluctuations/9 h (P<0.02). An increase (P<0.02) in oxytocin began 15 min before the beginning nadir of the PGFM pulse. A transient increase in progesterone did not occur at the beginning nadir of the PGFM pulse. Progesterone decreased (P<0.02) during the ascending portion and increased (P<0.03) as a rebound during the descending portion of the PGFM pulse. The peak of an LH pulse occurred 1.5 ± 0.4 h (range, 0.25-2.75 h) after the peak of the PGFM pulse. The wide range in the interval from a PGFM peak to an LH peak obscured the contribution of increasing LH to the rebound. The results did not support the hypothesis that oxytocin and PGFM increase concurrently. Results supported the hypothesis that the immediate transient progesterone increase that has been demonstrated with exogenous PGF2α does not occur during the ascending portion of an endogenous PGFM pulse. The hypothesis that the progesterone rebound after the peak of a PGFM pulse is temporally related to an LH pulse was supported.  相似文献   

19.
In Exp. I oxytocin (60 micrograms/100 kg/day) was infused into the jugular vein of 3 heifers on Days 14-22, 15-18 and 16-19 of the oestrous cycle respectively. In Exp. II 5 heifers were infused with 12 micrograms oxytocin/100 kg/day from Day 15 of the oestrous cycle until clear signs of oestrus. Blood samples were taken from the contralateral jugular vein at 2-h intervals from the start of the infusion. The oestrous cycle before and after treatment served as the controls for each animal. Blood samples were taken less frequently during the control cycles. In Exp. III 3 heifers were infused with 12 micrograms oxytocin/100 kg/day for 50 h before expected oestrus and slaughtered 30-40 min after the end of infusion for determination of oxytocin receptor amounts in the endometrium. Three other heifers slaughtered at the same days of the cycle served as controls. Peripheral concentrations of oxytocin during infusion ranged between 155 and 641 pg/ml in Exp. I and 18 and 25 pg/ml in Exp. II. In 4 our of 8 heifers of Exps I and II, one high pulse of 15-keto-13,14-dihydro-prostaglandin F-2 alpha (PGFM) appeared soon after the start of oxytocin infusion followed by some irregular pulses. The first PGFM pulse was accompanied by a transient (10-14 h) decrease of blood progesterone concentration. High regular pulses of PGFM in all heifers examined were measured between Days 17 and 19 during spontaneous luteolysis. No change in length of the oestrous cycle or secretion patterns of progesterone, PGFM and LH was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate endocrine mechanisms associated with the occasional occurrence of fertile oestrus during lactation in the high prolific Chinese Meishan (MS) breed, the incidence of oestrus and changes in plasma luteinizing hormone (LH) levels before and after oestradiol benzoate (OB, 15 micrograms/kg body weight) administration on day 22 was compared in 4 MS and 6 Large White (LW) sows. All sows exhibited oestrus in response to OB. Only 1 sow (MS) ovulated in response to OB, became pregnant and farrowed. Mean plasma LH levels before OB were low (MS: 0.38 +/- 0.06 ng LH/ml, LW: 0.29 +/- 0.04 ng LH/ml, ns). LH levels above 2 ng/ml (surge) occurred in 2/4 MS and 2/6 LW sows at 60 +/- 5 h after OB. The MS sow that ovulated had an LH surge level of 4.5 ng/ml plasma at 40 h after OB. These results indicate minor breed differences in the control of LH secretion during lactational anoestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号