首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five peaks of DNA glycosylase activity showing a preference for MNNG alkylated DNA have been identified from extracts of adapted M. luteus. They are numerically designated as GI to GV in order of their decreasing molecular weights. The first two of these peaks have been highly purified. GI, is a constitutive heat labile protein, 35% stimulated by the presence of 50 mM NaCl, acts exclusively on 3 MeA residues in alkylated DNA, 60-70% inhibited by the presence of 2 mM free 3MeA and has been designated as 3MeA DNA glycosylase enzyme. GII, which is an inducible protein, is heat stable, 28% inhibited by the presence of 50 mM NaCl, removes 3MeA, 3MeG, 7MeA & 7MeG with different efficiency, and has been designated as 3,7 methylpurine DNA glycosylase enzyme. The rate of release of 3 methylpurines is 30 times that of 7MeG. There is no activity of either enzyme on O2-MeC, O2-MeT, O4-MeT or O6-MeG. The apparent molecular weights of GI and GII proteins are 28 Kd and 22 Kd respectively.  相似文献   

2.
Properties of 3-methyladenine-DNA glycosylase from Escherichia coli.   总被引:21,自引:0,他引:21  
S Riazuddin  T Lindahl 《Biochemistry》1978,17(11):2110-2118
An Escherichia coli enzyme that releases 3-methyladenine and 3-ethyladenine in free form from alkylated DNA has been purified 2800-fold in 7% yield. The enzyme does not liberate several other alkylation products from DNA, including 7-methylguanine,O6-methylguanine, 7-methyladenine, N6-methyladenine, 7-ethylguanine, O6-ethylguanine, and the arylalkylated purine derivatives obtained by treatment of DNA with 7-bromomethyl-12-methylbenz[a]anthracene. The reaction of the enzyme with alkylated DNA leads to the introduction of apurinic sites but no chain breaks (less than one incision per ten apurinic sites), and there is no detectable nuclease activity with native DNA, depurinated DNA, ultraviolet-irradiated DNA, or X-irradiated DNA as potential substrates. The enzyme is termed 3-methyladenine-DNA glycosylase. It is a small protein, Mr = 19 000, that does not require divalent metal ions, phosphate, or other cofactors in order to cleave base-sugar bonds in alkylated DNA.  相似文献   

3.
The objective of this study was to evaluate the effectiveness of synchronization of follicular wave emergence using steroid hormone treatments in Nelore cows. Donors were placed into three groups. Those that were between days 9 and 12 of their cycle (estrus=day 0) formed the TI group (n=60), whilst those that were in any other stages of their estrus cycle constituted groups TII (n=60) and TIII (n=60). TI donors were submitted to a standard protocol of superovulation, however, TII and TIII donors were treated with the Syncro-Mate-B (SMB) or Controlled Internal Drug Releasing Device (CIDR-B) programs, respectively. Superovulation was induced with p-FSH, divided into eight decreasing doses at intervals of 12h. The donors received cloprostenol 48h after the beginning of the treatment and progestagens were removed 12h later. Artificial inseminations (AI) were done at 12 and 22h after the initiation of estrus and the embryo collections were done 7 days after AI. In the donors which displayed behavioral estrus, mean (+/-S.E.M.) total ova and viable (transferable) embryos were 15.8+/-1.4 and 8.3+/-1.0 (TI, n=56); 15.6+/-1.3 and 8.9+/-1.0 (TII, n=56); 17.3+/-1.0 and 9.9+/-0.9 (TIII, n=57), respectively, with no significant difference (P > or =0.05) among groups. In those animals that did not displayed behavioral estrus, the mean values of total ova and viable embryos were 3.5+/-1.6 and 0.7+/-0.5 (TI, n=4); 11.5+/-3.9 and 9.0+/-4.4 (TII, n=4); 8.7+/-5.0 and 5.0+/-2.9 (TIII, n=3), respectively, with no significant differences (P > or =0.05) among groups. Pregnancy rates of 62.2% (TI, n=235); 66.4% (TII, n=284) and 65.1% (TIII, n=244) were obtained with embryos transferred from these collections and did not differ significantly (P > or =0.05) among groups. It was concluded that the synchronization of the emergence of follicular waves in Nelore donors is usable and does not harm the efficiency of embryo transfer programs. In addition, in contrast to the standard superovulation protocol, this method permits the use of a large number of donors in a short time period, at any stage of the estrus cycle, minimizing the costs of embryo transfer.  相似文献   

4.
Alkylating agents react with various nitrogen and oxygen atoms in DNA and many of the products are substrates for repair processes. Oxygen atom derivatives such as O6-methylguanine (O6-meG) O4-methylthymine and methylphosphotriesters (MP) have been shown to undergo repair by methyl group removal. The proteins involved in the latter reaction can be considered to be methyltransferases (MT) because their action results in the transfer of the methyl group to a cysteine residue within a polypeptide. A rapid and sensitive assay for MT activity has been developed and used to screen extracts of bacteria harbouring an E. coli genomic DNA library carried in a plasmid vector. We report here the cloning of an E. coli gene coding for O6-meG and MP MT repair functions. These two activities reside on a 37Kd protein that can undergo a host-dependent cleavage to produce an 18Kd protein which contains only O6-meG MT and a 13Kd protein which contains only MP MT.  相似文献   

5.
We have assayed in extracts of HeLa cells the amount of acceptor protein that removes O6-methylguanine adducts from alkylated DNA. Cells were treated with single or multiple nontoxic doses of N-methyl-N'-nitrosoguanidine (MNNG) and the extracts were analyzed up to 32 h after the last exposure. The acceptor activity assayed immediately (1 h) after single exposures decreases linearly with dose indicating that the acceptor protein is used up by endogenous O6-methylguanine adducts in a stoichiometric reaction. Multiple exposures, assayed 8-24 h after the last exposure, increase the amount of acceptor protein in a dose dependent fashion followed by a decrease above a cumulative dose of 100 ng/ml. Under conditions of maximum induction, there are about 300,000 acceptor protein sites per cell, approximately 3 fold above the constitutive level. Both in adapted and unadapted cells the methyl group from O6-methylguanine adducts in the alkylated DNA is transferred to cysteine residues of the acceptor protein(s).  相似文献   

6.
W T Briscoe  J Spizizen  E M Tan 《Biochemistry》1978,17(10):1896-1901
Antibodies to O6-methyldeoxyguanosine were produced in rabbits and utilized in a radioimmunoassay to detect this nucleoside at picomole levels. The specificity of the antibodies was demonstrated by the use of nucleoside analogues as inhibitors in the radioimmunoassay. The antibodies cross-reacted with O6-methylguanosine, O6-methylguanine, and O6-ethylguanosine. There was 10(4) to 10(6) times less sensitivity to inhibition by deoxyadenosine, deoxyguanosine, and guanosine than by O6-methyldeoxyguanosine. The radioimmunoassay also detected O6-methylguanine in DNA alkylated by agents known to produce O6-methylguanine, such as N'-methyl-N-nitrosourea. DNA alkylated with dimethyl sulfate, which does not produce O6-methylguanine in DNA, cross-reacted with the antibodies to a very limited extent. Such an assay system for modified nucleic acid components would be very useful in following the production, persistence, and repair of these lesions in a variety of cells and tissues treated with a broad spectrum of carcinogens and suspected carcinogens.  相似文献   

7.
An inducible methyltransferase of Escherichia coli acts on O6-methylguanine in DNA by conveying the methyl group to one of its own cysteine residues. The protein has now been purified to apparent homogeneity from a constitutively expressing strain. The homogeneous methyltransferase exhibits no DNA glycosylase or endonuclease activity on alkylated DNA. Further, the methyltransferase activity is strikingly resistant to heat inactivation under reducing conditions. The protein has Mr = 18,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient and Stokes radius of the native enzyme yield Mr = 18,400. The amino acid composition of the purified protein shows 4 to 5 cysteine residues/transferase molecule. The methylated, inactive form of the transferase has an unaltered molecular weight.  相似文献   

8.
The O6-methylguanine-DNA methyltransferase of Escherichia coli acts rapidly and stoichiometrically to convert a mutagenic O6-methylguanine residue in DNA to unsubstituted guanine. Even at low protein concentrations and in the absence of any cofactors, the transfer of a methyl group to one of the protein's own cysteine residues occurs in less than 2 s at 37 degrees C. The entire kinetic process can be followed experimentally at 5 degrees C. Formation of S-methylcysteine in the protein is accompanied by loss of activity and accounts for the exceptional suicide kinetics of this enzyme as well as for the sharp saturation of O6-methylguanine repair observed in vivo. The enzyme can remove greater than 98% of the methyl groups from O6-methylguanine present in alkylated DNA, but leaves N-alkylated purines untouched. Single-stranded DNA containing O6-methylguanine is a poor substrate, with the methyl transfer occurring at approximately 0.1% of the rate for duplex DNA. This latter observation may explain the high frequency of mutations induced by alkylating agents at DNA replication forks.  相似文献   

9.
The restriction enzyme Bsp TI, an isoschizomer of Hae III (recognition site GGCC), has been detected in eight strains of serotype 5a5b and two serotype 3 strains of the entomopathogenic bacterium Bacillus sphaericus . Strains from other serotypes contained the enzymes Bsp TII and Bsp TIII, which digested pBR322 DNA into similar banding patterns after agarose gel electrophoresis but differed in their susceptibility to methylation of the substrate. Strains from serotypes 9, 25 and 26a26b were lacking in restriction enzyme activity. There was little correlation between phage typing and restriction enzyme activity, suggesting that restriction and modification are not responsible for phage specificity among entomopathogenic B. sphaericus strains.  相似文献   

10.
An activity from mouse liver with catalyzes the disappearance of O6-methylguanine from DNA methylated with methylnitrosourea has been partially purified by ammonium sulfate fractionation and DNA-cellulose chromatography. The activity does not require divalent metal ions and is not affected by EDTA. It is specific for the repair of O6-methylguanine lesions and does not affect the removal of 7-methylguanine, 7-methyladenine or 3-methyladenine. The disappearance of O6-methylguanine is linear with respect to the concentration of protein and is dependent on incubation temperature. The kinetics and substrate dependence experiments suggest that the protein factor is product-inactivated. Amino acid analysis of hydrolysates of protein obtained after incubation of methylated DNA with the protein factor indicates the presence of radiolabeled S-methyl-L-cysteine, suggesting that during the repair of O6-methylguanine from methylated DNA, the methyl group is transferred to a sulfhydryl of a cysteine residue of a protein. This represents the first such demonstration in a mammalian system.  相似文献   

11.
Comparison of the abilities of alkylated RNA and DNA to serve as substrates for the O6-alkylguanine-DNA-alkyltransferase have been carried out. It was found that the O6-methylguanine in tRNA was much less active as a substrate for the protein than O6-methylguanine in double stranded DNA. The difference in rates of repair was such that it is unlikely that the alkyltransferase would act on RNA in vivo and, therefore, the reaction with RNA should not contribute towards the exhaustion of its repair capacity.  相似文献   

12.
The biochemical mechanism and developmental expression for the repair of alkylated DNA has been characterized from Drosophila. As in other organisms, the correction of O6-methylguanine in Drosophila was found to involve the transfer of a methyl group from DNA to a protein cysteine residue. Two methylated proteins with subunit molecular weights of 30 kDa and 19 kDa were identified following incubation with [3H]-methylated substrate DNA and denaturing polyacrylamide gel electrophoresis. Identical molecular weights were found for the unmethylated forms of protein through their reaction to an antibody prepared against the 19 kDa Escherichia coli methyltransferase. Both Drosophila proteins are serologically reactive in adult males and females and most of the other developmental stages tested, with embryos representing the possible exception. The Drosophila proteins do not appear to be induced by sublethal exposures to alkylating agent.  相似文献   

13.
The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isomer is left unrepaired. Different cysteine residues in the Ada protein are used as acceptors in the repair of methyl groups derived from phosphotriesters and base residues.  相似文献   

14.
B Demple 《Nucleic acids research》1986,14(14):5575-5589
The activated Ada protein triggers expression of DNA repair genes in Escherichia coli in response to alkylation damage. Ada also possesses two distinct suicide alkyltransferase activities, for O6-alkylguanines and for alkyl phosphotriesters in DNA. The mutant Ada3 and Ada5 transferases repair O6-methylguanine in DNA 20 and 3000 times more slowly, respectively, than the wild-type Ada protein, but both exhibit normal DNA phosphotriester repair. These same proteins also exhibit delayed and sluggish induction of the ada and alkA genes. Since the C-terminal O6-methylguanine methyltransferase domain of Ada is not implicated in the direct binding of specific DNA sequences, this part of the Ada protein is likely to play an alternative mechanistic role in gene activation, either by promoting Ada dimerization, or via direct contacts with RNA polymerase.  相似文献   

15.
Virtually every organism so far tested has been found to possess an extremely efficient DNA repair mechanism to ensure that certain alkylated oxygens do not accumulate in the genome. The repair is executed by DNA methyltransferases (MTases) which repair DNA O6-methylguanine (O6MeG), O4-methylthymine (O4MeT) and methylphosphotriesters (MePT). The mechanism is rather extravagant because an entire protein molecule is expended for the repair of just one, or sometimes two, O-alkyl DNA adduct(s). Cells profit from such an expensive transaction by earning protection against death and mutation by alkylating agents. This review considers the structure, function and biological roles of a number of well-characterized microbial DNA repair MTases.  相似文献   

16.
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.  相似文献   

17.
The E. coli Ada protein (O6-methylguanine-DNA methyltransferase) has been purified using a high-level expression vector with a yield of about 3 mg per liter of E. coli culture. The 39-kDa protein has an extinction coefficient (E280 nm (1%)) of 5.3. Its isoelectric point of 7.1 is lower than that predicted from the amino acid content. The homogeneous Ada protein is fully active as a methyl acceptor from O6-methylguanine in DNA. Its reaction with O6-methylguanine in a synthetic DNA has a second-order rate constant of 1.1 x 10(9) M-1 min-1 at O degree C. Both the native form and the protein methylated at Cys-69 are monomeric. The CD spectrum suggests a low alpha-helical content and the radius of gyration of 23 A indicates a compact, globular shape. The middle region of the protein is sensitive to a variety of proteases, including an endogenous activity in E. coli, suggesting that the protein is composed of N-terminal and C-terminal domains connected by a hinge region. E. coli B has a higher level of this protease than does K12.  相似文献   

18.
A partially purified extract prepared from adapted M. luteus cells contains repair functions for oxygen methylated pyrimidine residues present in alkylated DNA. The removal of O2-MeT is mediated by a DNA glycosylase enzyme whereas disappearance of O4-MeT is effected by a methyltransferase in a manner similar to the in situ repair of O6-MeG. O4-MeT methyltransferase enzyme is unusually heat resistant. Synthesis of these repair proteins, which are distinctly different from the previously known inducible 3-MeA DNA glycosylase and O6-MeG methyltransferase activities, forms a part of the adaptive response.  相似文献   

19.
The pulmonary alveolar epithelium is composed of two morphologically distinct cell types, type I (TI) and type II (TII) cells. Alveolar TII cells synthesize, secrete, and recycle surfactant components; contain ion transporters; and secrete immune effector molecules. In response to alveolar injury, TII cells have the capacity to act as progenitor cells, proliferating and transdifferentiating into TI cells. Although various proteins are associated with TII cells, a plasma membrane marker specific to human TII cells that would be useful for identification in tissue and for isolating this cell type has not been described previously. We devised a strategy to produce a monoclonal antibody (MAb) specific to the apical surface of human TII cells and developed an MAb that appears to be specific for human TII cells. The antibody recognizes a 280- to 300-kDa protein, HTII-280, which has the biochemical characteristics of an integral membrane protein. HTII-280 is detected by week 11 of gestation and is developmentally regulated. HTII-280 is useful for isolating human TII cells with purities and viabilities >95%. HTII-280 is likely to be a useful morphological and biochemical marker of human TII cells that may help to advance our understanding of various lung pathological conditions, including the origin and development of various lung tumors. (J Histochem Cytochem 58:891–901, 2010)  相似文献   

20.
1. DNA was extracted from livers, kidneys and lungs of Syrian golden hamsters at various times (up to 96h) after injection of a hepatocarcinogenic dose of [14C]dimethylnitrosamine. Purine bases were released from the DNA by mild acid hydrolysis and separated by Sephadex G-10 chromatography. 2. At 7h after dimethylnitrosamine administration liver DNA was alkylated to the greatest extent, followed by that of lung and kidney, the values for which were 8 and 3% respectively of those for liver. 3. The O6-methylguanine/7-methylguanine ratios were initially the same in all three organs and in the liver DNA of rats under similar conditions of dose. 4. O6-Methylguanine was the most persistent alkylated purine in all three hamster tissues. There was evidence for excision of 7-methyl-guanine, the highest activity for this being present in the liver. 5. Detectable amounts of the minor products 3-methyladenine, 1-methyladenine, 3-methylguanine and 7-methyladenine were present in most hamster tissues, and their individual rates of loss from liver DNA were determined. 6. Ring-labelling of the normal purines in DNA was highest in the liver, followed closely by the lung (80% of that in liver) whereas the kidney had very low incorporation (3% of that in liver). 7. The results are discussed with respect to the hepatotoxicity of dimethylnitrosamine, the miscoding potential of the various alkylation products and the induction of liver tumours in hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号