首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to establish whether the rise in plasma motilin observed after a meal in humans can influence the postprandial motor activity of the antrum. Antroduodenal postprandial motility profiles and indices obtained from 5 controls and 5 subjects infused with exogenous synthetic motilin (0.1 microgram.kg-1) or with the motilin receptor agonist erythromycin lactobionate (200 mg) were compared. Motilin infusion increased plasma motilin concentrations about 5 times above the physiological range but failed to modify the normal postprandial contractile response. On the other hand, in 4 of the 5 subjects, erythromycin induced an intense motor response that mimicked phase III of the migrating motor complex. Our study demonstrates that, during the postprandial period, motilin antral receptors can be stimulated only with doses of motilin exceeding the physiological plasma concentrations, and that the motor effect obtained did not mimic the usual postprandial motility pattern. Our results, therefore, do not support the proposal that the postprandial motility of the antrum is regulated by the plasma levels of motilin.  相似文献   

2.
Experiments were performed to determine how postprandial motilin, gastrin, and pancreatic polypeptide plasma concentrations measured during vagal blockade relate to coincident small intestinal motility patterns. Feeding produced a postprandial pattern of intestinal motility coincident with a sustained increase in gastrin and pancreatic polypeptide and a decline in motilin plasma concentrations. Vagal blockade replaced the fed pattern with one similar to migrating motor complex (MMC) activity. Highest motilin plasma concentrations were observed during phase III of this MMC-like activity, as occurs in the fasted state. Vagal blockade reduced but did not abolish the postprandial increase in plasma gastrin and pancreatic polypeptide concentrations. Termination of vagal cooling produced a decline in motilin and an elevation in gastrin and pancreatic polypeptide concentrations, coincident with the return of the fed pattern. In conclusion, during vagal blockade in the fed state (i) motilin, but not gastrin or pancreatic polypeptide plasma concentrations, fluctuate with the MMC-like activity, and any measurement of motilin concentration under these circumstances must be interpreted on the basis of gut motility patterns, and (ii) gastrin and pancreatic polypeptide concentrations are marginally elevated, but these changes are not enough to disrupt the MMC or have any motor effect. Lastly, the fed pattern and the postprandial changes in motilin, gastrin, and pancreatic polypeptide concentrations are in part dependent upon intact vagal pathways.  相似文献   

3.
In the elderly, the rise in postprandial plasma triglyceride (TG) concentrations is increased, contributing to their increased risk of cardiovascular disease. We sought to determine the incorporation of ingested fat (whipping cream enriched with [1,1,1-(13)C]triolein) into plasma lipids during the postprandial period in six healthy elderly (67 ± 1 yr old) and six healthy young (23 ± 2 yr old) subjects. Blood and expired air samples were taken before and at 2-h intervals during the 8-h postprandial period. As expected, the area under the curve of postprandial plasma TG concentrations was larger in the elderly compared with the young subjects (152 ± 38 vs. 66 ± 27 mg·dl(-1)·h, P < 0.05). The incorporation of [(13)C]oleate in plasma free fatty acids (FFAs) and TG of the small (S(f) = 20-400) triglyceride-rich lipoprotein (TRL) fraction was significantly higher in the elderly compared with the young subjects, resulting in increased postprandial contributions of the ingested lipid to plasma FFAs (41 ± 3 vs. 26 ± 6%, P < 0.05) and the small TRL fraction (36 ± 5 vs. 21 ± 3%, P < 0.05) in elderly. Plasma apoB-100 concentration was higher, whereas the rate of oxidation of the ingested lipid was lower (P < 0.05) in the elderly. We conclude that increased postprandial lipemia in the elderly involves increased contribution of ingested lipid to the plasma small TRLs. This appears to be driven at least in part by increased appearance of the ingested fat as plasma FFA and increased availability of apo B-100 lipoproteins in the elderly.  相似文献   

4.
In patients with chronic pancreatitis (CP) the relation among exocrine pancreatic secretion, gastrointestinal hormone release, and motility is disturbed. We studied digestive and interdigestive antroduodenal motility and postprandial gut hormone release in 26 patients with CP. Fifteen of these patients had pancreatic insufficiency (PI) established by urinary para-aminobenzoic acid test and fecal fat excretion. Antroduodenal motility was recorded after ingestion of a mixed liquid meal. The effect of pancreatic enzyme supplementation was studied in 8 of the 15 CP patients with PI. The duration of the postprandial antroduodenal motor pattern was significantly (P < 0.01) prolonged in CP patients (324 +/- 20 min) compared with controls (215 +/- 19 min). Antral motility indexes in the first hour after meal ingestion were significantly reduced in CP patients. The interdigestive migrating motor complex cycle length was significantly (P < 0.01) shorter in CP patients (90 +/- 8 min) compared with controls (129 +/- 8 min). These abnormalities were more pronounced in CP patients with exocrine PI. After supplementation of pancreatic enzymes, these alterations in motility reverted toward normal. Digestive and interdigestive antroduodenal motility are abnormal in patients with CP but significantly different from controls only in those with exocrine PI. These abnormalities in antroduodenal motility in CP are related to maldigestion.  相似文献   

5.
The objective of this study was to examine the postprandial response to an exogenous fat source in eight weight-stable postobese subjects (2;-3 years after gastric bypass) and eight matched control women, using a stable isotope, [13C]oleate. After a high fat breakfast meal (1,062 cal, 67% fat), [13C]oleate in triglyceride (TG)-rich lipoproteins (Sf >400 and Sf 20;-400) and nonesterified fatty acids (NEFA), and 13C in breath CO2, were monitored over 8 h. There were no differences in resting energy expenditure, thermic effect of food, carbohydrate/fat oxidation ratio, breath 13CO2 enrichment, or fecal fat content between postobese and control subjects. Postprandially, there was no difference in S(f) 20;-400 TG or NEFA, but postobese subjects had lower Sf >400 incremental area under the curve (AUC) (- 33%, P < 0.0025) and glucose [P < 0.01 by repeated measures analysis of variance (RM ANOVA)]. Postprandial 13C in Sf >400 TG returned to fasting levels 4 h earlier in postobese subjects and was lower than in control subjects at 4 and 6 h (P < 0.05 by RM ANOVA). The greatest difference was in the [13C]NEFA profiles. In control subjects [13C]NEFA increased markedly over 8 h; postobese subject [13C]NEFA remained close to fasting nonenriched values, and was strikingly lower than in control subjects (72% lower by AUC, P < 0.0001 by RM ANOVA). Finally, postobese subjects tended to have lower postprandial insulin (P < 0.01, 4 h), lower postprandial acylation-stimulating protein, and lower fasting leptin (-46%, P < 0.02). This study demonstrates clear metabolic differences in exogenous dietary fat partitioning in postobese women. These findings are compatible with an increased efficiency of dietary fat storage and suggest one possible mechanism for promotion of weight regain in postobese individuals.  相似文献   

6.
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed.  相似文献   

7.
Assessment of patterns of flow in the small bowel is difficult. Multiple intraluminal impedance has been recently used for study of flow dynamics in the esophagus. Our aims were 1) to validate multiple intraluminal impedance by correlating impedance events with intestinal flow as detected by fluoroscopy and 2) to determine intestinal flow patterns in the fasting and postprandial period and their correspondence with manometry. First, six healthy subjects underwent simultaneous video-fluoroscopic, manometric, and impedance recording from the duodenum. Videofluoroscopy was used to validate impedance patterns corresponding with barium flow in the fasting and postprandial periods. Next, 16 healthy subjects underwent prolonged simultaneous recording of impedance and manometry in both periods. Most flow events were short (10 cm or less), with antegrade flow being the most common. Correspondence between impedance and videofluoroscopy increased with increasing length of barium flow. Impedance corresponded better with flow, at any distance, than manometry. However, impedance and manometric events, when analyzed separately as index events, always corresponded with fluoroscopic flow. The fasting and postprandial periods showed comparable patterns of flow, with frequent, highly propulsive manometric and impedance sequences. Motility index was positively and significantly associated with length of impedance events. Phase 3 of the migrating motor complex could be easily recognized by impedance. Multiple intraluminal impedance can detect intestinal flow events and corresponds better with fluoroscopic flow than manometry.  相似文献   

8.
The effects of the addition of hypolipidemic drugs and 1-acylglycerolipids on the metabolism of oleate in plants have been studied in vivo and in vitro. Using aged potato slices with [14C]oleate as a precursor, it was found that these drugs markedly inhibited both the incorporation into complex lipids and the desaturation of oleate to linoleate. Moreover, in vitro experiments, carried out with microsomes prepared from developing safflower seeds and [14C]oleate or [14C]oleoyl-CoA as precursors, confirmed the inhibitory effect of the drugs on oleate desaturation, and showed that while WY14643 mainly affected oleoyl thiokinase activity, DH990 exerted its strongest effect on the formation of PL, indicating that the mode of action of these two drugs in safflower microsomes is essentially different. Addition of LPC or LPE stimulated the incorporation of radiolabeled precursor into PC and PE, respectively, as well as the desaturation of oleate to linoleate when [14C]oleoyl-CoA was the precursor. The evidence obtained suggests that oleoyl-PE, as well as oleoyl-PC, should be considered as a possible substrate for oleate desaturation in plants.  相似文献   

9.
The miscibility of triolein and cholesteryl oleate with 1-palmitoyl-2-oleoyl phosphatidylcholine was studied at the argon-buffer interface. The surface phase behavior of the system was analogous to that for cholesteryl ester-phospholipid mixtures in that both monolayer and double layer surface phases were formed. By considering the bulk properties of cholesteryl oleatetriolein mixtures and the two-dimensional phase rule, the entire system could be described. Double layer properties suggest that it consists of mostly triolein and phospholipid in the layer adjacent to the aqueous phase. The monolayer phase shows the formation of complexes between the neutral lipids and the phospholipid with stoichiometries nearly identical with those reported for bilayers (Hamilton, J. A., Miller, K. W., and Small, D. M. (1983) J. Biol. Chem. 258, 12821-12826). A second complex with a 3:1 stoichiometry is formed between triolein and cholesteryl oleate independently of interactions with phospholipid. Upon interaction with phospholipid, the triolein-cholesteryl oleate complex loses proportionately more area than either lipid alone. Because the area of complexes with phospholipid is constant, overall neutral lipid miscibility in such complexes is enhanced by the cholesteryl oleate-triolein interaction. Thus, our data explain the apparently nonideal mixing of cholesteryl oleate, triolein, and phospholipid in monolayers and in bilayers.  相似文献   

10.
It is generally believed that gastric emptying of solids is regulated by a coordinated motor pattern between the antrum and pylorus. We studied the role of the vagus nerve in mediating postprandial coordination between the antrum and pylorus. Force transducers were implanted on the serosal surface of the body, antrum, pylorus, and duodenum in seven dogs. Dogs were given either a solid or a liquid meal, and gastroduodenal motility was recorded over 10 h. Gastric emptying was evaluated with radiopaque markers mixed with a solid meal. Dogs were treated with hexamethonium, N(G)-nitro-l-arginine methyl ester (l-NAME), or transient vagal nerve blockade by cooling. A postprandial motility pattern showed three distinct phases: early, intermediate, and late. In the late phase, profound pyloric relaxations predominantly synchronized with giant antral contractions that were defined as postprandial antropyloric coordination. A gastric emptying study revealed that the time at which gastric contents entered into the duodenum occurred concomitantly with antropyloric coordination. Treatment by vagal blockade or hexamethonium significantly reduced postprandial antral contractions and pyloric relaxations of the late phase. l-NAME changed pyloric motor patterns from relaxation dominant to contraction dominant. Solid gastric emptying was significantly attenuated by treatment with hexamethonium, l-NAME, and vagal blockade. Postprandial antropyloric coordination was not seen after feeding a liquid meal. It is concluded that postprandial antropyloric coordination plays an important role to regulate gastric emptying of a solid food. Postprandial antropyloric coordination is regulated by the vagus nerve and nitrergic neurons in conscious dogs.  相似文献   

11.
The aim of this study was to clarify if small doses of neurotensin (2.5 and 5.0 pmol.kg-1.min-1, i.v.) in dogs alter the postprandial motor pattern of the duodenum in comparison with the adjacent jejunum. The intestinal motor patterns were quantified by means of closely spaced strain gauge transducers and a computerized method. An acaloric viscous meal of cellulose was used to induce postprandial motility. Gastric emptying was measured radiographically. During intravenous control infusion of saline, the characteristics of duodenal and jejunal motor pattern were significantly different. The duodenum contracted at a lower rate and showed a higher incidence of stationary contractions. The lower dose (2.5 pmol.kg-1.min-1) of neurotensin showed no significant effects, whereas the higher dose (5 pmol.kg-1.min-1) significantly slowed gastric emptying and altered the motor pattern of both intestinal segments in a similar manner. It reduced the number of contractions, shortened the contraction spread, increased the incidence of stationary contractions, and decreased the incidence of propagated contractions. The alterations of motility caused enhanced mixing of luminal contents. The differences in motor patterns seen in the control state between both intestinal segments were diminished during neurotensin. Data revealed no differences in sensitivity of the duodenum and jejunum to neurotensin. Results suggest that neurotensin is one of the gastrointestinal peptides involved in regulating intestinal contractile patterns.  相似文献   

12.
The role of pancreatic polypeptide (PP) and motilin in the regulation of the migrating motor complex (MMC) was studied in normal subjects. Both plasma motilin and PP levels changed cyclically in the fasted state and were highest in the late phase II period preceding the activity front in the duodenum. A continental breakfast invariably disrupted the MMC and induced a fed pattern of motility. After the meal plasma motilin levels decreased whereas PP levels rose significantly. Infusion of pure porcine motilin during the fasted state induced an activity front and a rise in plasma PP levels. Infusion of bovine PP in doses producing plasma PP levels above the postprandial values neither induced an activity front nor prevented its occurrence. During PP infusion, however, plasma motilin levels were low, although the activity front was not inhibited. PP seems to have no clear role in the regulation of the motor component of the MMC of man. The role of motilin in the production of the activity front of the MMC is discussed.  相似文献   

13.
To synthesize ethyl‐oleate ester, a complex Ca‐alginate gel co‐entrapped system was prepared. The gel beads contained two kinds of biocatalysts (living yeast cells and a lipase enzyme) and various amounts of glucose (100–400 g/L). These alginate beads dispersed directly in pure oleic acid. To follow the bioconversion of the cell growth, the glucose uptake of yeast cells, the concentration of ethanol inside the gel beads and the ethyl‐oleate concentration in oleic acid phase was monitored. The glucose was quantitatively taken up by yeast cells during 24–72 h, depending on the concentration of glucose. After this 24–72‐hour period, the glucose uptake was stopped. In accordance with changes in glucose concentration, the concentration of ethanol and ethyl‐oleate increased rapidly during the first day of fermentation and thereafter slowed down. It is supposed that the inhibitory effect of produced ethanol would be resolved by co‐immobilization of lipase in the same gel particles. Using lipase, one is able to transform ethanol to ethyl‐oleate, which is soluble in oleic acid. According to the data obtained a minimum of 4 U/mL lipase is required to increase ethyl‐oleate production significantly. Summing up it can be concluded that by means of this system a maximum yield of ethanol and ethyl‐oleate was achieved when gel beads containing 100 g/L glucose and 4 U/mL lipase enzyme were used.  相似文献   

14.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

15.
Neuropeptide Y (NPY), a 36-amino acid peptide abundantly expressed in the brain, has been implicated in the regulation of feeding and visceral functions. The present study was designed to investigate whether or not NPY specifically regulates duodenal motility. The manometric method was used to measure duodenal motility in conscious, freely moving rats. The rat duodenum showed phasic contractions mimicking the migrating motor complex in the fasted state that were replaced by irregular contractions after the ingestion of food. NPY powerfully affected the contractile activity after intracerebroventricular (i.c.v.) administration, changing fed (postprandial) patterns into phasic contractions characterized as fasted (interdigestive) patterns. This effect was mediated via receptors with pharmacological profiles similar to rat Y(2) and Y(4) receptors, although neither Y(1) nor Y(5) agonists had any effects on motility despite potent feeding-stimulatory effects. Immunoneutralization with anti-NPY antiserum administered i.c.v. abolished fasted patterns and induced fed-like motor activities. An i.c.v. dose of peptide YY produced a different effect from NPY, with increase in the motor activities of both fed and fasted patterns. These results indicate that fasted and fed motor activities are regulated processes and that NPY induces fasted activity through Y(2), and possibly Y(4), receptors, which may represent an integrated mechanism linked to the onset of feeding behavior.  相似文献   

16.
Rat liver was perfused in situ via the portal vein without recirculation: 1) Nerve stimulation (20 Hz, 2 ms, 20 V) increased glucose output and shifted lactate uptake to output; the alterations were diminished by oleate but not octanoate. 2) Glucagon (1nM) stimulated glucose output maximally also in the presence of the fatty acids, so that nerve stimulation could not increase it further. The hormone also enhanced lactate uptake and nerve stimulation counteracted this effect. The counteraction was diminished by oleate but not octanoate. 3) Insulin (100nM) slightly lowered glucose output and had no effect on lactate balance. It antagonized the increase of glucose output by nerve stimulation, but left the shift of lactate uptake to release unaffected. These events were not influenced by the fatty acids. 4) Nerve stimulation decreased ketone body production from oleate and octanoate. 5) Glucagon increased ketogenesis from oleate, but not octanoate. In the presence of glucagon nerve stimulation also lowered ketogenesis. This decrease was diminished in the presence of oleate. 6) Insulin lowered ketogenesis from oleate but not octanoate. In the presence of insulin nerve stimulation decreased ketogenesis; the relative change was independent of the fatty acids. The complex interactions between fatty acids, glucagon and insulin in the modulation of sympathetic nerve actions can be summarized as follows: Oleate, which enters the mitochondria via the carnitine system, but not octanoate, which enters independently from this system, as well as insulin but not glucagon effectively modulated the nerve actions on carbohydrate metabolism. Glucagon but not insulin modulated the nerve effects on ketogenesis from oleate but not octanoate. The regulatory interactions between substrates, hormones and nerves can best be explained on the basis of the model of metabolic zonation.  相似文献   

17.
Adrenaline, noradrenaline, vasopressin and angiotensin increased 14CO2 production from [1-14C]oleate by hepatocytes from fed rats but not by hepatocytes from starved rats. The hormones did not increase 14CO2 production when hepatocytes from fed rats were depleted of glycogen in vitro. Increased 14CO2 production from ]1-14C]oleate in response to the hormones was observed when hepatocytes from starved rats were incubated with 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. 3-Mercaptopicolinate inhibited uptake and esterification of [1-14C]oleate, slightly increased 14CO2 production from [1-14C]oleate and greatly increased the [3-hydroxybutyrate]/[acetoacetate] ratio. In the presence of 3-mercaptopicolinate 14CO2 production in response to the catecholamines was blocked by the alpha-antagonist phentolamine and required extracellular Ca2+. The effects of vasopressin and angiotensin were also Ca2+-dependent. The actions of the hormones of 14CO2 production from [I-14C]oleate by hepatocytes from starved rats in the presence of 3-mercaptopicolinate thus have the characteristics of the response to the hormones found with hepatocytes from fed rats incubated without 3-mercaptopicolinate. The stimulatory effects of the hormones on 14CO2 production from [1-14C]oleate were not the result of decreased esterification (as the hormones increased esterification) or increased beta-oxidation. It is suggested that the effect of the hormones to increase 14CO2 production from [1-14C]oleate are mediated by CA2+-activation of NAD+-linked isocitrate dehydrogenase, the 2-oxoglutarate dehydrogenase complex, and/or electron transport. The results also demonstrate that when the supply of oxaloacetate is limited it is utilized for gluconeogenesis rather than to maintain tricarboxylic acid-cycle flux.  相似文献   

18.
Reducing postprandial oxidative stress (OxS), decreasing postprandial blood triglyceride level (TG) and improving lipoprotein status is likely to have a preventive impact on the development of cardiovascular disease (CVD). Previously we have shown that the antioxidant probiotic Lactobacillus fermentum ME-3 (DSM14241) is characterized by antiatherogenic effects. This randomized double-blind placebo-controlled study evaluated the influence of kefir enriched with an antioxidative probiotic L. fermentum ME-3 (LfKef) on postprandial OxS, blood TG response and lipoprotein status. 100 clinically healthy subjects were recruited into the study. Blood parameters of postprandial OxS, TG and lipoprotein status were determined by oxidized LDL, baseline diene conjugation in LDL (BDC-LDL), oxidized LDL complex with beta-2 glycoprotein (Beta2-GPI-oxLDL), paraoxonase (PON) activity, LDL-Chol, HDL-Chol and TG. To evaluate general body postprandial OxS-load we measured 8-isoprostanes (8-EPI) in the urine. Consumption of LfKef significantly reduced the postprandial level of oxidized LDL, BDC-LDL, Beta2-GPI-oxLDL, urinary 8-isoprostanes and postprandial TG and caused a significant increase in HDL-Chol and PON activity. This is the first evidence that kefir enriched with an antioxidant probiotic may have a positive effect on both postprandial OxS and TG response as well as on lipoprotein status.  相似文献   

19.
PURPOSE OF REVIEW: Several lines of evidence suggest that postprandial lipemia increases the risk of atherogenesis, and in each of the systems involved in postprandial metabolism the roles of many genes have been explored in order to establish the possible implications of their variability in coronary heart disease risk. RECENT FINDINGS: This report focuses on recent results pertaining to postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and coronary heart disease. The postprandial lipid response was modified by polymorphisms within the genes for apolipoprotein AI, apolipoprotein E, apolipoprotein B, apolipoprotein CI, apolipoprotein CIII, apolipoprotein AIV, apolipoprotein AV, lipoprotein lipase, hepatic lipase, fatty acid-binding protein-2, the fatty acid transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. We also discuss recent advances in the effects of gene regulation using knockdown animal models on postprandial lipoprotein metabolism. SUMMARY: The review discusses several of these factors as well as the potential impact of gene polymorphism on the variability of postprandial lipoprotein metabolism as intermediate phenotypes for coronary heart disease. The variability in postprandial lipid response is highly complex. Future studies will need to be large if they are to assess the effects of multiple polymorphisms.  相似文献   

20.
The degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, by the purified complex of fatty acid oxidation from Escherichia coli was studied to determine how much of the metabolite is converted to 3,5-cis-tetradecadienoyl-CoA and thereby diverted from the classical, isomerase-dependent pathway of oleate beta-oxidation. Approximately 10% of the 2,5-intermediate was converted to the 3,5-isomer. When the latter compound was allowed to accumulate, it strongly inhibited the flux through the main pathway. Since Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase was not detected in E. coli cells grown on oleate, the 3,5-intermediate cannot be metabolized via the reductase-dependent pathway. However, it was hydrolyzed by a thioesterase, which was most active with 3,5-cis-tetradecadienoyl-CoA as substrate and which was induced by growth of E. coli on oleate. An analysis of fatty acids present in the medium after growth of E. coli on oleate revealed the presence of 3,5-tetradecadienoate, which was not detected after cells were grown on palmitate or glucose. Altogether, these data prompt the conclusion that oleate is mostly degraded via the classical, isomerase-dependent pathway in E. coli but that a small amount of 2-trans,5-cis-tetradecadienoyl-CoA is diverted from the pathway via conversion to 3,5-cis-tetradecadienoyl-CoA by Delta(3),Delta(2)-enoyl-CoA isomerase. The 3,5-intermediate, which would strongly inhibit beta-oxidation if allowed to accumulate, is hydrolyzed, and the resultant 3,5-tetradecadienoate is excreted into the growth medium. This study provides evidence for the novel function of a thioesterase in beta-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号