首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
FcgammaRIIB, a low-affinity FcR for IgG, inhibits BCR-mediated activation when these two receptors are co-cross-linked by Ags and IgG-containing immune complexes. Although a role for FcgammaRIIB in the germinal center (GC) reaction has been proposed, conflicting results have been published regarding the levels of FcgammaRIIB expressed on GC B cells in normal and autoimmune-prone mice and humans. In the present study, we investigate this issue in detail in mice by using multiple GC B cell markers, two different antigenic systems, primary and secondary GC responses, and by excluding the influence of splenic influx of immature B cells and passive acquisition of FcgammaRIIB from follicular dendritic cells. Our results are in concordance with previous data indicating that FcgammaRIIB expression is up-regulated on GC B cells in normal mice. In contrast, we observe comparable levels of FcgammaRIIB on GC and non-GC B cells in New Zealand White, New Zealand Black, and B6.Sle1 autoimmune-prone strains. Therefore, we suggest that these strains exhibit failed up-regulation of FcgammaRIIB on GC B cells, rather than down-regulation, as previously suggested. Also, in contrast to previous indications, this perturbed regulation is not uniquely associated with deletion polymorphisms in the promoter region of the FcgammaRIIB gene but does appear to be independent of genetic background. Finally, we present evidence indicating that FcgammaRIII, a low-affinity activating IgG FcR, is expressed on the GC B cells of normal but not autoimmune-prone mice.  相似文献   

3.
Rheumatoid factors (RF) are autoantibodies with specificity for the Fc portion of IgG, and IgG-containing immune complexes are likely to be the major source of RF autoantigens. Therefore, the activation of RF-producing B cells could be controlled specifically through recognition of IgG immune complexes by the low-affinity IgG FcR, FcgammaRIIB, a potent negative regulator of the BCR. To test this possibility, we determined the development of RF in C57BL/6 (B6) mice lacking FcgammaRIIB, in relation to the H2 haplotype, complement C3, and the Y-linked autoimmune acceleration (Yaa) mutation. FcgammaRIIB-null B6 mice displayed substantial anti-IgG2a RF activities in their sera, in addition to anti-DNA autoantibodies. Their RF and anti-DNA responses were linked to the H2(b) haplotype, but were suppressed almost completely by the H2(d) haplotype. Strikingly, the absence of C3 failed to modulate RF production, but strongly inhibited anti-DNA production. Furthermore, we observed that partial FcgammaRIIB deficiency (i.e., heterozygous level of FcgammaRIIB expression) was sufficient to induce the production of RF and anti-DNA autoantibodies in the presence of the Yaa mutation. In contrast to FcgammaRIIB, the deficiency in another BCR negative regulator, CD22, was unable to promote RF and anti-DNA autoimmune responses in B6 mice. Our results indicate that RF autoimmune responses are critically controlled by FcgammaRIIB, together with the H2(b) and Yaa gene, while C3 regulates positively and specifically anti-DNA, but not RF autoimmune responses.  相似文献   

4.
In B cells, HLA-DO controls HLA-DM-mediated peptide loading on MHC class II molecules. We analyzed whether HLA-DO mutations are associated with autoimmune diseases characterized by an autoantibody component and with a linkage to HLA-DR or HLA-DQ. These diseases include systemic lupus erythematosus, rheumatoid arthritis, celiac disease, and Graves' disease. In addition, several B-cell leukemias were screened for mutations in HLA-DO. A limited number of polymorphisms in DOA and DOB were found, most of which are non-coding changes or result in a conserved amino acid change. A novel non-conserved Arg to Cys mutation in DOA was found in a patient suffering from chronic lymphocytic leukemia. Further analysis did not reveal any effect on the function of HLA-DO. We conclude that HLA-DO variants are not critically involved in the autoimmune diseases and B-cell leukemias studied here.  相似文献   

5.
Li C  Chung B  Tao J  Iosef C  Aoukaty A  Wang Y  Tan R  Li SS 《Cellular signalling》2008,20(11):1960-1967
X-linked lympho-proliferative (XLP) is an immunodeficiency condition caused by mutation or deletion of the gene encoding the adaptor protein SAP/SH2D1A. Besides defects in T cell and NK cell function and an absence of NKT cells, XLP can also manifest as lymphomas resulting primarily from uncontrolled B cell proliferation upon acute infection by Epstein-Barr virus. While it has been demonstrated that SAP regulates the functions of T cells and NK cells through the SLAM family of immunoreceptors, its role in B cells has not been defined. Here we show that SAP forms a ternary complex with the kinase Lyn and the inhibitory IgG Fc receptor FcgammaRIIB to regulate B cell proliferation and survival. SAP binds directly and simultaneously to the Lyn SH3 domain and an Immuno-receptor Tyrosine-based Inhibitory Motif (ITIM) in FcgammaRIIB, resulting in the activation of the latter. Moreover, SAP associates with FcgammaRIIB in mouse splenic B cells and promotes its tyrosine phosphorylation. Expression of SAP in the A20 B cell line led to a marked reduction in Blnk phosphorylation, a decrease in Akt activation, and a near-complete ablation of phosphorylation of the MAP kinases Erk1/2, p38 and JNK upon colligation of FcgammaRIIB with the B cell receptor (BCR). In contrast, an XLP-causing SAP mutant was much less efficient in eliciting these effects in B cells. Furthermore, compared to A20 cells, SAP transfectants displayed a significantly reduced rate of proliferation and an increased sensitivity to activation-induced cell death. Collectively these data identify an intrinsic function for SAP in inhibitory signaling in B cells and suggests that SAP may play an important role in balancing positive versus negative immune responses.  相似文献   

6.
The low-affinity FcR for IgG FcgammaRIIB suppresses the development of IgG autoantibodies and autoimmune disease in normal individuals, but how this effect is mediated is incompletely understood. To investigate this issue, we created FcgammaRIIB-deficient versions of two previously described targeted BCR-transgenic lines of mice that contain follicular B cells with specificity for the hapten arsonate, but with different levels of antinuclear autoantigen reactivity. The primary development and tolerance of both types of B cells were unaltered by the absence of FcgammaRIIB. Moreover, the reduced p-azophenylarsonate-driven germinal center and memory responses characteristic of the highly autoreactive clonotype were not reversed by an intrinsic FcgammaRIIB deficiency. In contrast, the p-azophenylarsonate-driven primary Ab-forming cell responses of both clonotypes were equivalently increased by such a deficiency. In total, our data do not support the idea that FcgammaRIIB directly participates in the action of primary or germinal center tolerance checkpoints. In contrast, this receptor apparently contributes to the prevention of autoimmunity by suppressing the production of autoreactive IgGs from B cells that have breached tolerance checkpoints and entered the Ab-forming cell pathway due to spontaneous, or cross-reactive, Ag-mediated activation.  相似文献   

7.
The murine low-affinity receptor for IgG, FcgammaRIIB, mediates inhibition of B cell receptor-triggered events in primary B cells. We investigated the expression of FcgammaRIIB on germinal center (GC) cells to better understand its role in memory B cell development. Immunohistological analyses demonstrated differential regulation of FcgammaRIIB on GC cells. Its levels are markedly down-regulated on GC B cells and up-regulated on follicular dendritic cells (FDC) at all times during the GC response. Analyses of surface expression of FcgammaRIIB by flow cytometry and FcgammaRIIB mRNA levels by RT-PCR analysis confirmed that this FcR is down-regulated in GC B cells. In mice lacking FcgammaRIIB, the development of the secondary FDC reticulum in GCs is substantially delayed, although the overall kinetics of the GC response are unaltered. These findings have direct implications for models proposed to account for the selection of high-affinity B cells in the GC and suggest a role for FcgammaRIIB in promoting the maturation of the FDC reticulum.  相似文献   

8.
Immune complex (IC)-mediated tissue inflammation is controlled by stimulatory and inhibitory IgG Fc receptors (FcgammaRs). Systemic lupus erythematosus is a prototype of IC-mediated autoimmune disease; thus, imbalance of these two types of FcgammaRs is probably involved in pathogenesis. However, how and to what extent each FcgammaR contributes to the disease remains unclear. In lupus-prone BXSB mice, while stimulatory FcgammaRs are intact, inhibitory FcgammaRIIB expression is impaired because of promoter region polymorphism. To dissect roles of stimulatory and inhibitory FcgammaRs, we established two gene-manipulated BXSB strains: one deficient in stimulatory FcgammaRs (BXSB.gamma(-/-)) and the other carrying wild-type Fcgr2b (BXSB.IIB(B6/B6)). The disease features were markedly suppressed in both mutant strains. Despite intact renal function, however, BXSB.gamma(-/-) had IC deposition in glomeruli associated with high-serum IgG anti-DNA Ab levels, in contrast to BXSB.IIB(B6/B6), which showed intact renal pathology and anti-DNA levels. Lymphocytes in BXSB.gamma(-/-) were activated, as in wild-type BXSB, but not in BXSB.IIB(B6/B6). Our results strongly suggest that both types of FcgammaRs in BXSB mice are differently involved in the process of disease progression, in which, while stimulatory FcgammaRs play roles in effecter phase of IC-mediated tissue inflammation, the BXSB-type impaired FcgammaRIIB promotes spontaneous activation of self-reactive lymphocytes and associated production of large amounts of autoantibodies and ICs.  相似文献   

9.
IL-17 is a pro-inflammatory cytokine implicated in autoimmune and inflammatory conditions. The development/survival of IL-17-producing CD4 T cells (Th17) share critical cues with B-cell differentiation and the circulating follicular T helper subset was recently shown to be enriched in Th17 cells able to help B-cell differentiation. We investigated a putative link between Th17-cell homeostasis and B cells by studying the Th17-cell compartment in primary B-cell immunodeficiencies. Common Variable Immunodeficiency Disorders (CVID), defined by defects in B-cell differentiation into plasma and memory B cells, are frequently associated with autoimmune and inflammatory manifestations but we found no relationship between these and Th17-cell frequency. In fact, CVID patients showed a decrease in Th17-cell frequency in parallel with the expansion of activated non-differentiated B cells (CD21(low)CD38(low)). Moreover, Congenital Agammaglobulinemia patients, lacking B cells due to impaired early B-cell development, had a severe reduction of circulating Th17 cells. Finally, we found a direct correlation in healthy individuals between circulating Th17-cell frequency and both switched-memory B cells and serum BAFF levels, a crucial cytokine for B-cell survival. Overall, our data support a relationship between Th17-cell homeostasis and B-cell maturation, with implications for the understanding of the pathogenesis of inflammatory/autoimmune diseases and the physiology of B-cell depleting therapies.  相似文献   

10.
Data suggests that modulation of FcgammaRIIB expression represents a significant risk factor for the development of autoimmunity. In this study, we investigated this notion in mice that possess genetics permissible for the development of autoimmunity. To this end, Mrl-MpJ Fcgr2b-/- mice were monitored for the development of autoreactivity. We found that FcgammaRIIB deficiency led to chronic B cell activation associated with increased germinal center and plasma cell accumulation in the spleen. Likewise, Mrl-MpJ Fcgr2b-/- mice exhibited significant serum IgG reactivity against DNA. We further analyzed the IgG isotype contribution to the anti-dsDNA response and found increases in all subtypes with the exception of IgG3. In particular, we found large increases in IgG1 and IgG2b autoreactivity correlating with significant increases in immune complex deposition and kidney pathology. Finally, we found dendritic cells derived from Mrl-MpJ Fcgr2b-/- mice greatly increased IL-12 expression upon coincubation with apoptotic thymocytes compared with wild-type controls. The results indicate that FcgammaRIIB is an important regulator of peripheral tolerance and attenuation of the inhibitory signal it provides enhances autoimmune disease on susceptible backgrounds. Additionally, the data indicates FcgammaRIIB function has a significant impact on APC activity, suggesting a prominent role in dendritic cell activity in response to interaction with particulate autoantigens.  相似文献   

11.
The potential sequelae of intestinal infection with Yersinia enterocolitica include reactive arthritis, erythema nodosum, Reiter's syndrome and other autoimmune diseases. The role of the immune response in the pathogenesis of these diseases has not been fully defined, but autoimmune manifestations may be a consequence of the increase in autoantibodies as a result of polyclonal B-cell activation induced by Yersinia. We investigated the effects of Y. enterocolitica O:3 derivatives on B lymphocyte activation in vivo. Groups of five specific pathogen free (SPF) Swiss mice were inoculated with bacterial cell extract, Yersinia outermembrane proteins (Yops) or lipopolysaccharide (LPS) obtained from Y. enterocolitica O:3 and their immunoglobulin-secreting spleen cells were detected by isotype-specific protein A plaque assay. The presence of specific anti-Yersinia antibodies and autoantibodies was determined in mouse sera by ELISA. In all experiments a marked increase in the number of secretory cells of different isotypes was observed as early as the third day after inoculation. IgG and IgM anti-Yersinia antibodies were detected in the sera of all inoculated mice, and autoantibodies against myosin in the sera of those inoculated with bacterial cell extract. The sera from animals stimulated with LPS reacted with myelin, actin and laminin, while the sera from mice inoculated with Yops reacted with myelin, thyroglobulin and cardiolipin. These results suggest that SPF Swiss mice inoculated with any one of the Y. enterocolitica derivatives tested exhibited polyclonal activation of B lymphocytes as a result of stimulation by various bacterial components and not only LPS stimulation.  相似文献   

12.
The processing and presentation of Ag by Ag-specific B cells is highly efficient due to the dual function of the B cell Ag receptor (BCR) in both signaling for enhanced processing and endocytosing bound Ag. The BCR for IgG (FcgammaRIIB1) is a potent negative coreceptor of the BCR that blocks Ag-induced B cell proliferation. Here we investigate the influence of the FcgammaRIIB1 on BCR-mediated Ag processing and show that coligating the FcgammaRIIB1 and the BCR negatively regulates both BCR signaling for enhanced Ag processing and BCR-mediated Ag internalization. Treatment of splenic B cells with F(ab')2 anti-Ig significantly enhances APC function compared with the effect of whole anti-Ig; however, whole anti-Ig treatment is effective when binding to the FcgammaRIIB1 was blocked by a FcgammaRII-specific mAb. Processing and presentation of Ag covalently coupled to anti-Ig were significantly decreased compared with Ag coupled to F(ab')2anti-Ig; however, the processing of the two Ag-Ab conjugates was similar in cells that did not express FcgammaRIIB1 and in splenic B cells treated with a FcgammaRII-specific mAb to block Fc binding. Internalization of monovalent Ag by B cells was reduced in the presence of whole anti-Ig as compared with F(ab')2 anti-Ig, but the internalized Ag was correctly targeted to the class II peptide loading compartment. Taken together, these results indicate that the FcgammaRIIB1 is a negative regulator of the BCR-mediated Ag-processing function.  相似文献   

13.
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.  相似文献   

14.
Several strains of mice are known to develop spontaneous autoimmune diseases like lupus erythematosus and they show various immunological abnormalities as well. Despite different genetic backgrounds, they manifest various immunological abnormalities in common, e.g., polyclonal B-cell activation (PBA) and resistance to tolerance induction. To elucidate mechanisms of the development of autoimmunity, tolerance inducibility was examined in autoimmune and normal mice using trinitrophenylated carboxymethyl cellulose (TNP-CMC) as tolerogen which is known to induce TNP-specific B-cell tolerance without the participation of T cells. NZB and MRL/Mp-lpr/lpr mice were used as autoimmune mice and C57BL/6, BALB/c, and MRL/Mp-+/+ mice as nonautoimmune mice. When TNP-CMC-injected mice were challenged with T-independent antigens, all of the mice tested were shown to be tolerant. In contrast, when TNP-CMC-injected mice were challenged with T-dependent antigen and secondary IgG responses were assessed, autoimmune mice showed rather hyperreactivity, while nonautoimmune mice showed hyporesponsiveness. Cyclophosphamide improved this defective tolerance inducibility. By the solid-phase radioimmunoassay it was revealed that average affinity of serum anti-TNP antibodies produced in TNP-CMC-injected mice was low. Such low affinity antibodies were produced in large amount in autoimmune mice. Hence, it was suggested that B-cell clones destined to produce low affinity IgG antibodies were responsible for the resistance to tolerance induction and such clones were expanding in autoimmune mice.  相似文献   

15.
The NOD mouse is an invaluable model for the study of autoimmune diabetes. Furthermore, although less appreciated, NOD mice are susceptible to other autoimmune diseases that can be differentially manifested by altering the balance of T cell costimulatory pathways. In this study, we show that constitutively expressing B7-1 on B cells (NOD-B7-1B-transgenic mice) resulted in reduced insulitis and completely protected NOD mice from developing diabetes. Furthermore, B7-1 expression led to a dramatic reduction of the B cell compartment due to a selective deletion of follicular B cells in the spleen, whereas marginal zone B cells were largely unaffected. B cell depletion was dependent on B cell specificity, mediated by CD8(+) T cells, and occurred exclusively in the autoimmune-prone NOD background. Our results suggest that B cell deletion was a consequence of the specific activation of autoreactive T cells directed at peripheral self Ags presented by maturing B cells that expressed B7-1 costimulatory molecules. This study underscores the importance of B7 costimulatory molecules in controlling the amplitude and target of autoimmunity in genetically prone individuals and has important implications in the use of costimulatory pathway antagonists in the treatment of human autoimmune diseases.  相似文献   

16.
 Animal models of autoimmune diseases have been instrumental in advancing our understanding of autoimmunity in humans. Collagen-induced arthritis (CIA) in mice is an autoimmune disease model of rheumatoid arthritis. Susceptibility to CIA in mice is linked to genes of the major histocompatibility complex (MHC). CD4+ T cells that express the T-cell receptor (TCR) Tcra-V11.1 and/or Tcrb-V8.2 play a key role in the pathogenesis of arthritis in the DBA/1 mouse (H2 q ). We identified an inbred mouse strain, FVB/NJ (H2 q ), that is resistant to arthritis induction and exhibits a genomic deletion of certain Tcrb-V gene segments. We report a novel polymerase chain reaction-based method for the rapid identification of new mouse strains that exhibit germline Tcrb-V gene deletions. We mapped for the first time both the 5′ and 3′ breakpoints of the Tcrb-V deletion in the FVB/NJ, SWR, SJL, C57L, and C57BR strains to within 1.1 kilobases. Since there is an association between a particular Tcra-V allele (Tcra-V11.1 d ) and arthritis susceptibility in H2 q mouse strains, we examined the allelic polymorphisms of the Tcra-V11 gene subfamily members between the arthritis-susceptible DBA/1 mouse and the arthritis-resistant FVB/NJ mouse strain. The amino acid sequences of the Tcra-V11.1 alleles differ at two positions (codons 18 and 68). Therefore, the resistance of FVB/NJ mouse to arthritis induction may be due in part to Tcra-V11.1 coding sequence polymorphism and Tcrb-V8.2 gene segment deletion, as we have recently demonstrated in the case of SWR mouse strain. Received: 12 January 1999 / Revised: 17 March 1999  相似文献   

17.
O J Kim  J L Yates 《Journal of virology》1993,67(12):7634-7640
We have isolated mutants of Epstein-Barr virus (EBV) which carry a dominant selectable marker inserted into the third exon of the gene encoding two membrane proteins, TP1 and TP2 (or LMP2A and LMP2B), which are expressed in latently infected, growth-transformed B cells. One of the mutants also acquired a 260-bp deletion beginning in the first intron a few base pairs from the terminal repeats and removing most of the second TP exon, including the initial coding sequences of TP2. These EBV mutants transform human B cells in culture, and the transformed B-cell clones carrying them release EBV at approximately normal frequencies.  相似文献   

18.
Immune regulation produced by B cells has been attributed to production and secretion of interleukin (IL)-10, which is a characteristic of mouse B1 cells. In view of the widespread clinical use of B-cell depletion therapies in autoimmune and malignant diseases, it is important to monitor the function and fate of regulatory B cells. However, there is no consensus regarding the phenotypic identity of human IL-10(+) B cells. Here we show that human CD11b(+) B1 cells, one of two recently described subpopulations of B1 cells, spontaneously produce IL-10 and suppress T-cell activation. In view of the capacity of these B cells to either stimulate T-cell proliferation or suppress T-cell activation, CD11b(+) B1 cells are considered to be capable of orchestrating elements of immune responsiveness and thus are termed "orchestrator B1 cells," or "B1orc," whereas CD11b(-) B1 cells that primarily secrete antibody are termed "secretor B1 cells," or "B1sec."  相似文献   

19.
Among the cytokines that regulate B-cell homeostasis are the TNF-like ligands B-lymphocyte stimulator (BLyS; also B-cell activation factor) and a proliferation-inducing ligand (APRIL). BLyS and APRIL share two receptors; that is, B-cell maturation antigen and transmembrane activator and CAML interactor. Therapeutic approaches using biologics are limited for treatment of lupus patients. One previously approved drug is belimumab, which antagonizes the B-cell stimulator BLyS. Atacicept, another biologic inhibiting BLyS and APRIL, was terminated for serious adverse events - raising the question of whether APRIL should be neutralized in autoimmune diseases.Treamtrakanpon and coworkers analyzed B-lymphocyte stimulator (BLyS; also B-cell activation factor) and a proliferation-inducing ligand (APRIL) expression in patients with lupus nephritis and observed a correlation with renal disease activity and APRIL serum levels [1]. In addition, the authors describe that, upon treatment with immunosuppressors, nonresponding patients had higher APRIL serum levels. They thus concluded that APRIL could be a potential biomarker for predicting difficult-to-treat cases of lupus nephritis, and propose the use of APRIL antagonists such as atacicept for treatment of lupus nephritis patients with high APRIL serum levels.These conclusions might be premature, as Treamtrakanpon and coworkers have not found a correlation between the level of APRIL in kidney tissue and renal disease activity. Another hypothesis could be that APRIL has a protective effect in autoimmune diseases. Indeed, the crucial role of BLyS in B-cell maintenance became evident by the analysis of BLyS-deficient mice displaying lower numbers of mature B cells and of BLyS transgenic mice developing severe B-cell hyperplasia. Although APRIL can trigger different B-cell responses in vitro, including proliferation and survival of human and murine B cells, it is less critical than BLyS in B-cell maintenance as APRIL knockout and transgenic mice reveal no gross abnormalities in lymphoid homeostasis [2]. In fact, APRIL was found to modulate specific B-cell responses such as IgA isotype switching, increased IgM secretion and B1 cell activity.Meanwhile, BLyS is an established promoter of B-cell-triggered autoimmmune diseases such as systemic lupus erythematosus and rheumatoid arthritis, whereas the role of APRIL in these pathologies is rather controversial. Neutralizing BLyS with the mAb belimumab displayed a modest, although statistically significant, therapeutic effect in systemic lupus erythematosus [3,4]. But blocking both BLyS and APRIL with atacicept (TACI-Fc) was associated with a pronounced reduction of immunoglobulins, and occurrence of serious infections led to a premature termination of a phase II/III trial in lupus nephritis [5]. The combination of mycofenolate mofetil with atacicept may have contributed to the decrease of immunoglobulins. However, at acicept combined with another drug such as methotrexate in patients with rheumatoid arthritis was also associated with a significant reduction of immunoglobulins (especially IgM). In this autoimmune disease, atacicept failed to demonstrate efficacy on American College of Rheumatology 20 criteria [6]. In contrast, administration of belimumab showed a modest but significant efficacy using the same evaluation criteria in rheumatoid arthritis [7].These findings suggest distinct roles for BLyS and APRIL in lupus and other B-cell-mediated autoimmune diseases. Elevated serum levels are found for both cytokines in lupus patients, and for BLyS there is a consensus in the literature that this reflects its disease-promoting activity. Elevated APRIL serum levels, however, have been - depending on the respective study - either positively or negatively correlated with disease features [8]. One possible explanation for this discrepancy could be differences in the patient cohorts analyzed. A recent study by Jacob and colleagues analyzed a murine lupus model in APRIL-deficient mice and observed elevated numbers of splenocytes, increased autoantibody production and a tendency towards increased IgG production [9]. Notably, ectopic APRIL expression does not result - in contrast to BLyS transgenic mice - in lupus-like symptoms. In fact, we found that APRIL does dampen collagen-induced arthritis, the most common mouse model for human arthritis [10].Experimental mouse models for autoimmune diseases obviously cannot entirely mimic human diseases. Nevertheless, in vivo data are accumulating that do not support a disease-supporting role for APRIL in B-cell-mediated autoimmunity. The study by Treamtrakanpon and colleagues is putting forward the need to better elucidate the role of APRIL in B-cell-driven diseases before concluding a therapeutic approach.  相似文献   

20.
High-affinity pathologic rheumatoid factor (RF) B cells occur in autoimmune diseases such as rheumatoid arthritis, but are deleted in healthy individuals. The reasons for the survival and differentiation of these autoreactive B cells in rheumatoid arthritis are not known. Previous studies in mice transgenic for a human IgM RF have shown that peripheral encounter with soluble human IgG leads to deletion of high-affinity RF B cells; however, deletion can be prevented when concomitant T cell help is provided. This study aimed to further discern the minimal factors necessary not only for the in vivo survival of RF B cells, but also for their differentiation into Ab-secreting cells. The combination of MHC class II-reactive T cells and Ag induced the production of RF in human IgM RF transgenic mice, while either stimulus alone was ineffective. Neutralizing Abs against CD40 ligand (CD40L), but not against IL-4 or IL-15, abrogated IgM-RF production. Moreover, blockade of CD40L-CD40 allowed IgG to delete the RF precursor cells. Most importantly, activating Abs to CD40 could substitute entirely for T cell help in promoting the survival of RF precursors and in stimulating RF synthesis in T cell deficient animals. The data indicate that CD40 signaling alone can prevent deletion of RF B cells by Ag and in the presence of IgG is sufficient to trigger RF synthesis. The results suggest that selective induction of apoptosis in high-affinity RF B cells may be achieved by blockade of CD40L-CD40 interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号