首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gil J  García MA  Esteban M 《FEBS letters》2002,529(2-3):249-255
The double-stranded RNA-dependent protein kinase (PKR) induces apoptosis by activation of the FADD/caspase 8 pathway. Here we show that upon PKR expression, caspase 9 is processed and activated, correlating with the translocation of cytochrome c to the cytoplasm and breakdown of mitochondrial potential upon Bax insertion. However, treatment of cells with an inhibitor of caspase 9 could not prevent PKR-induced apoptosis. During PKR-induced apoptosis, caspase 9 is activated downstream of caspase 8. Our findings revealed that caspase 9, although dispensable, is a mediator of PKR-induced cell death.  相似文献   

2.
Interferon (IFN) mediates its antiviral effects by inducing a number of responsive genes, including the double-stranded RNA (dsRNA)-dependent protein kinase, PKR. Here we report that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant. We determined that the mechanism of influenza virus-induced apoptosis involved death signaling through FADD/caspase-8 activation, while other viruses such as vesicular stomatitis virus (VSV) and Sindbis virus (SNV) did not significantly provoke PKR-mediated apoptosis but did induce cytolysis of fibroblasts via activation of caspase-9. Significantly, treatment with IFN-alpha/beta greatly sensitized the fibroblasts to FADD-dependent apoptosis in response to dsRNA treatment or influenza virus infection but completely protected the cells against VSV and SNV replication in the absence of any cellular destruction. The mechanism by which IFN increases the cells' susceptibility to lysis by dsRNA or certain virus infection is by priming cells to FADD-dependent apoptosis, possibly by regulating the activity of the death-induced signaling complex (DISC). Conversely, IFN is also able to prevent the replication of viruses such as VSV that avoid triggering FADD-mediated DISC activity, by noncytopathic mechanisms, thus preventing destruction of the cell.  相似文献   

3.
4.
5.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

6.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

7.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

8.
For 10 years, research has focused on signaling pathways controlling translation to explain neuronal death in Alzheimer Disease (AD). Previous studies demonstrated in different cellular and animal models and AD patients that translation is down-regulated by the activation of double-stranded RNA-dependent protein kinase (PKR). Among downstream factors of PKR, the Fas-associated protein with a death domain (FADD) and subsequent activated caspase-8 are responsible for PKR-induced apoptosis in recombinant virus-infected cells. However, no studies have reported the role of PKR in death receptor signaling in AD. The aim of this project is to determine physical and functional interactions of PKR with FADD in amyloid-β peptide (Aβ) neurotoxicity and in APPSLPS1 KI transgenic mice. In SH-SY5Y cells, results showed that Aβ42 induced a large increase in phosphorylated PKR and FADD levels and a physical interaction between PKR and FADD in the nucleus, also observed in the cortex of APPSLPS1 KI mice. However, PKR gene silencing or treatment with a specific PKR inhibitor significantly prevented the increase in pT451-PKR and pS194-FADD levels in SH-SY5Y nuclei and completely inhibited activities of caspase-3 and -8. The contribution of PKR in neurodegeneration through the death receptor signaling pathway may support the development of therapeutics targeting PKR to limit neuronal death in AD.  相似文献   

9.
P58(IPK) is a tetratricopeptide repeat-containing cochaperone that is involved in stress-activated cellular pathways and that inhibits the activity of protein kinase PKR, a primary mediator of the antiviral and antiproliferative properties of interferon. To gain better insight into the molecular actions of P58(IPK), we generated NIH 3T3 cell lines expressing either wild-type P58(IPK) or a P58(IPK) deletion mutant, DeltaTPR6, that does not bind to or inhibit PKR. When treated with double-stranded RNA (dsRNA), DeltaTPR6-expressing cells exhibited a significant increase in eukaryotic initiation factor 2alpha phosphorylation and NF-kappaB activation, indicating a functional PKR. In contrast, both of these PKR-dependent events were blocked by the overexpression of wild-type P58(IPK). In addition, the P58(IPK) cell line, but not the DeltaTPR6 cell line, was resistant to dsRNA-induced apoptosis. Together, these findings demonstrate that P58(IPK) regulates dsRNA signaling pathways by inhibiting multiple PKR-dependent functions. In contrast, both the P58(IPK) and DeltaTPR6 cell lines were resistant to tumor necrosis factor alpha-induced apoptosis, suggesting that P58(IPK) may function as a more general suppressor of programmed cell death independently of its PKR-inhibitory properties. In accordance with this hypothesis, although PKR remained active in DeltaTPR6-expressing cells, the DeltaTPR6 cell line displayed a transformed phenotype and was tumorigenic in nude mice. Thus, the antiapoptotic function of P58(IPK) may be an important factor in its ability to malignantly transform cells.  相似文献   

10.
The Fas receptor delivers signals crucial for lymphocyte apoptosis through its cytoplasmic death domain. Several Fas cytoplasmic-associated proteins have been reported and studied in cell lines. So far, only Fas-associated death domain protein (FADD), another death domain-containing molecule has been shown to be essential for Fas signals in vivo. FADD is thought to function by recruiting caspase-8 through its death-effector domain. To test whether FADD is sufficient to deliver Fas signals, we generated transgenic mice expressing a chimera comprised of the Fas extracellular domain and FADD death-effector domain. Expression of this protein in lymphocytes of Fas-deficient MRL-lpr/lpr mice completely diminishes their T cell but not their B cell abnormalities. These results suggest that FADD alone is sufficient for initiation of Fas signaling in primary T cells, but other pathways may operate in B cells.  相似文献   

11.
12.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

13.
Matrix (M) protein mutants of vesicular stomatitis virus (VSV) are promising oncolytic agents for cancer therapy. Previous research has implicated Fas and PKR in apoptosis induced by other viruses. Here, we show that dominant-negative mutants of Fas and PKR inhibit M protein mutant virus-induced apoptosis. Most previous research has focused on the adapter protein FADD as a necessary transducer of Fas-mediated apoptosis. However, the expression of dominant-negative FADD had little effect on the induction of apoptosis by M protein mutant VSV. Instead, virus-induced apoptosis was inhibited by the expression of a dominant-negative mutant of the adapter protein Daxx. These data indicate that Daxx is more important than FADD for apoptosis induced by M protein mutant VSV. These results show that PKR- and Fas-mediated signaling play important roles in cell death during M protein mutant VSV infection and that Daxx has novel functions in the host response to virus infection by mediating virus-induced apoptosis.  相似文献   

14.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

15.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

16.
Activated double-stranded RNA (dsRNA-dependent protein kinase PKR is a potent growth inhibitory protein that is primarily activated in virally infected cells, inducing cell death. Here we investigate whether selective activation of PKR can be used to kill cancer cells that express mutated genes containing deletions or chromosomal translocations. We show that antisense (AS) RNA complementary to fragments flanking the deletion or translocation can produce a dsRNA molecule of sufficient length to activate PKR and induce cell death following hybridization with mutated but not wild-type mRNA. Using the U87MG Delta EGFR cell line, which expresses a truncated form of epidermal growth factor receptor (EGFR), Delta(2-7) EGFR, we found that expression of a 39-nucleotide (nt) AS RNA complementary to the unique exon 1 to 8 junction caused selective death of cells harboring the truncated EGFR both in vitro and in vivo but did not affect cells expressing wild-type EGFR. A lentiviral vector expressing the 39-nt AS sequence strongly inhibited glioblastoma growth in mouse brain when injected after tumor cell implantation. This PKR-mediated killing strategy may be useful in treating many cancers that express a unique RNA species.  相似文献   

17.
The double-stranded (ds) RNA-dependent protein kinase (PKR) regulates protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor-2. PKR is activated by viral induced dsRNA and thought to be involved in the host antiviral defense mechanism. PKR is also activated by various nonviral stresses such as growth factor deprivation, although the mechanism is unknown. By screening a mouse cDNA expression library, we have identified an ubiquitously expressed PKR-associated protein, RAX. RAX has a high sequence homology to human PACT, which activates PKR in the absence of dsRNA. Although RAX also can directly activate PKR in vitro, overexpression of RAX does not induce PKR activation or inhibit growth of interleukin-3 (IL-3)-dependent cells in the presence of IL-3. However, IL-3 deprivation as well as diverse cell stress treatments including arsenite, thapsigargin, and H2O2, which are known to inhibit protein synthesis, induce the rapid phosphorylation of RAX followed by RAX-PKR association and activation of PKR. Therefore, cellular RAX may be a stress-activated, physiologic activator of PKR that couples transmembrane stress signals and protein synthesis.  相似文献   

18.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

19.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号