首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced functional residual capacity (FRC) is consistently found in obese subjects. In 10 obese subjects (mean +/- SE age 49.0 +/- 6 yr, weight 128.4 +/- 8 kg, body mass index 44 +/- 3 kg/m2) without respiratory disease, we examined 1) supine changes in total lung capacity (TLC) and subdivisions, 2) whether values of total respiratory resistance (Rrs) are appropriate for mid-tidal lung volume (MTLV), and 3) estimated resistance of the nasopharyngeal airway (Rnp) in both sitting and supine postures. The results were compared with those of 13 control subjects with body mass indexes of <27 kg/m2. Rrs at 6 Hz was measured by applying forced oscillation at the mouth (Rrs,mo) or the nose (Rrs,na); Rnp was estimated from the difference between sequential measurements of Rrs,mo and Rrs,na. All measurements were made when subjects were seated and when supine. Obese subjects when seated had a restrictive defect with low TLC and FRC-to-TLC ratio; when supine, TLC fell 80 ml and FRC fell only 70 ml compared with a mean supine fall of FRC of 730 ml in control subjects. Values of Rrs,mo and Rrs,na at resting MTLV in obese subjects were about twice those in control subjects in both postures. Relating total respiratory conductance (1/Rrs) to MTLV, the increase in Rrs,mo in obese subjects was only partly explained by their reduced MTLV. Rnp was increased in some obese subjects in both postures. Despite the increased extrapulmonary mass load in obese subjects, further falls in TLC and FRC when supine were negligible. Rrs,mo at isovolume was increased. Further studies are needed to examine the causes of reduced TLC and increases in Rrs,mo and sometimes in Rnp in obese subjects.  相似文献   

2.
Hyperinflation is the consequence of a dysbalance of static forces (determining the relaxation volume) and/or of the dynamic components. The relaxation volume is determined by an equilibrium between the elastic recoil of the lungs and of the chest walls. The dynamic components include the pattern of breathing, upper airway resistance and postinspiratory activity of inspiratory muscles. The respiratory and laryngeal muscles are under control and thus both static and dynamic hyperinflation can be secured. Our knowledge of the mechanism of increased FRC is based on clinical observations and on experiments. The most frequent stimuli leading to a dynamic increase of functional residual lung capacity (FRC) include hypoxia and vagus afferentation. Regulation of FRC is still and undetermined concept. The controlled increase of FRC, hyperinflation, participates in a number of lung diseases.  相似文献   

3.
To examine the effects of changes in lung volume on the magnitude of maximal bronchoconstriction, seven anesthetized, paralyzed, tracheostomized cats were challenged with aerosolized methacholine (MCh) and respiratory system resistance (Rss) was measured at different lung volumes using the interrupter technique. Analysis of the pressure changes following end-inspiratory interruptions allowed us to partition Rss into two quantities with the units of resistance, one (Rinit) corresponding to the resistance of the airways and the other (Rdif) reflecting the viscoelastic properties of the tissues of the respiratory system as well as gas redistribution following interruption of flow. Rinit and Rdif were used to construct concentration-response curves to MCh. Lung volume was increased by the application of 5, 10, and 15 cmH2O of positive end-expiratory pressure. The curve for Rinit reached a plateau in all cats, demonstrating a limit to the degree of MCh-induced bronchoconstriction. The mean value of Rinit (cmH2O.ml-1.s) for the group under control conditions was 0.011 and rose to 0.058 after maximal bronchoconstriction; the volume at which the flow was interrupted was 11.5 +/- 0.5 (SE) ml/kg above functional residual capacity (FRC). It then fell progressively to 0.029 at 21.2 +/- 0.8 ml/kg above FRC, 0.007 at 35.9 +/- 1.3 ml/kg above FRC, and 0.005 at 52.0 +/- 1.8 ml/kg above FRC. Cutting either the sympathetic or parasympathetic branches of the vagi had no significant effect on the lung volume-induced changes in MCh-induced bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In this study we explored the effects of physical training on the response of the respiratory system to exercise. Eight subjects with irreversible mild-to-moderate airflow obstruction [forced expiratory volume in 1 s of 85 +/- 14 (SD) % of predicted and ratio of forced expiratory volume in 1 s to forced vital capacity of 68 +/- 5%] and six normal subjects with similar anthropometric characteristics underwent a 2-mo physical training period on a cycle ergometer three times a week for 31 min at an intensity of approximately 80% of maximum heart rate. At this work intensity, tidal expiratory flow exceeded maximal flow at control functional residual capacity [FRC; expiratory flow limitation (EFL)] in the obstructed but not in the normal subjects. An incremental maximum exercise test was performed on a cycle ergometer before and after training. Training improved exercise capacity in all subjects, as documented by a significant increase in maximum work rate in both groups (P < 0.001). In the obstructed subjects at the same level of ventilation at high workloads, FRC was greater after than before training, and this was associated with an increase in breathing frequency and a tendency to decrease tidal volume. In contrast, in the normal subjects at the same level of ventilation at high workloads, FRC was lower after than before training, so that tidal volume increased and breathing frequency decreased. These findings suggest that adaptation to breathing under EFL conditions does not occur during exercise in humans, in that obstructed subjects tend to increase FRC during exercise after experiencing EFL during a 2-mo strenuous physical training period.  相似文献   

5.
In 14 healthy male subjects we studied the effects of rib cage and abdominal strapping on lung volumes, airway resistance (Raw), and total respiratory resistance (Rrs) and reactance (Xrs). Rib cage, as well as abdominal, strapping caused a significant decrease in vital capacity (respectively, -36 and -34%), total lung capacity (TLC) (-31 and -27%), functional residual capacity (FRC) (-28 and -28%), and expiratory reserve volume (-40 and -48%) and an increase in specific airway conductance (+24 and +30%) and in maximal expiratory flow at 50% of control TLC (+47 and +42%). The decrease of residual volume (RV) was significant (-12%) with rib cage strapping only. Abdominal strapping resulted in a minor overall increase in Rrs, whereas rib cage strapping produced a more marked increase at low frequencies; thus a frequency dependence of Rrs was induced. A similar pattern, but with lower absolute values, of Rrs was obtained by thoracic strapping when the subject was breathing at control FRC. Xrs was decreased, especially at low frequencies, with abdominal strapping and even more with thoracic strapping; thus the resonant frequency of the respiratory system was shifted toward higher frequencies. Partitioning Rrs and Xrs into resistance and reactance of lungs and chest wall demonstrated that the different effects of chest wall and abdominal strapping on Rrs and Xrs reflect changes mainly of chest wall mechanics.  相似文献   

6.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

7.
Influence of lung volume on oxygen cost of resistive breathing   总被引:2,自引:0,他引:2  
We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.  相似文献   

8.
Interstitial fibrosis may increase resistance to collateral flow (Rcoll) because of decreased lung volume and destruction of collateral channels or it may decrease Rcoll because of emphysematous changes around fibrotic regions. In addition, if interstitial fibrosis involves a small region of lung periphery, interdependence from surrounding unaffected lung should produce relatively large changes in volume of the fibrotic region during lung inflation. We studied the effects of interstitial fibrosis on collateral airflow by measuring Rcoll at functional residual capacity (FRC) in nine mongrel dogs before and 28 days after the local instillation of bleomycin into selected lung segments. In six of these dogs Rcoll was also measured at a higher lung volume (transpulmonary pressure = 12 cmH2O above FRC pressure). Rcoll increased in fibrotic lung segments following local treatment with bleomycin. With lung inflation (high transpulmonary pressure) Rcoll fell a similar proportion in fibrotic and nonfibrotic lung regions. These observations suggest that collateral resistance increases in fibrotic segments because lung volume decreases or because collateral pathways are involved directly in the fibrotic process. Compensatory increases in collateral communications do not occur. In addition, pulmonary interdependence does not cause disproportionate increases in volume and decreases in Rcoll of the fibrotic region during lung inflation.  相似文献   

9.
During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964-975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by approximately 10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.  相似文献   

10.
Normal subjects preserve tidal volume (VT) in the face of added inspiratory resistance by increasing maximal amplitude and duration of the rising phase of respiratory driving pressure (DP) and by changing the shape of this phase to one that is more concave to the time axis. To explore the possible role of chest wall afferents in mediating these responses, we determined averaged DP in eight quadriplegic subjects during steady-state unloaded breathing and while breathing through an inspiratory resistance (8.5 cmH2O X 1(-1) X s). As with normal subjects, quadriplegics preserved VT (loaded VT = 106% control) by utilizing all three mechanisms. However, prolongation of the inspiratory duration derived from the DP waveform (+22% vs. +42%) and shape response were significantly less in the quadriplegic subjects. Shape response was completely absent in subjects with C4 lesions. The results provide strong evidence that respiratory muscle spindles are responsible for shape response and that changes in afferent feedback from the chest wall play an important role in mediating inspiratory prolongation.  相似文献   

11.
The purpose of the current investigation was to determine whether increases and decreases in skin resistance tonic level could be controlled by individuals given discrete visual feedback of such activity. Thirty-six male undergraduate students served as subjects. They were assigned randomly in equal numbers to four groups; two of the groups received accurate feedback of skin resistance level changes and two received inaccurate feedback. The two accurate-feedback groups differed with respect to the order in which increases and decreases in skin resistance level were reinforced. Each noncontingent group was matched with one of the contingent groups in terms of reinforcement density. The results indicated that accurate feedback produced skin resistance level changes consistent with the type of reinforcement employed. However, operant control was not clearly sustained subsequent to a reversal in the type of tonic level change reinforced. Some problems related to the clinical application of skin resistance level training are discussed.  相似文献   

12.
Effects of paralysis with pancuronium on chest wall statics in awake humans   总被引:2,自引:0,他引:2  
The influence of tonic inspiratory muscle activity on the relaxation characteristics of the chest wall, rib cage (RC), and abdominal wall (ABW) has been investigated in four highly trained subjects. Chest wall shape and volume were estimated with magnetometers. Pleural pressure (Pes) and abdominal pressure were measured with esophageal and gastric balloons, respectively. Subjects were seated reclining 30 degrees from upright, and respiratory muscle weakness was produced by pancuronium bromide until RC inspiratory capacity was decreased to 60% of control. Only minor changes were observed for Konno-Mead relaxation characteristics (RC vs. ABW) between control and paralysis. Similarly, although RC relaxation curves (RC vs. Pes) during paralysis were significantly different from control (P less than 0.05), the changes were small and not consistent. The differences between paralysis-induced changes in resting end-expiratory position of the chest wall and helium-dilution functional residual capacity (FRC) suggested changes in volume of blood within the chest wall. We conclude that 1) although tonic inspiratory activity of chest wall muscles exists, it does not significantly affect the chest wall relaxation characteristics in trained subjects; 2) submaximal paralysis produced by pancuronium bromide is likely to modify either spinal attitude or the distribution of blood between extremities and the thorax; these effects may account for the changes in FRC in other studies.  相似文献   

13.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

14.
The purpose of the current investigation was to determine whether increases and decreases in skin resistance tonic level could be controlled by individuals given discrete visual feedback of such activity. Thirty-six male undergraduate students served as subjects. They were assigned randomly in equal numbers to four groups; two of the groups received accurate feedback of skin resistance level changes and two received inaccurate feedback. The two accurate-feedback groups differed with respect to the order in which increases and decreases in skin resistance level were reinforced. Each noncontingent group was matched with one of the contingent groups in terms of reinforcement density. The results indicated that accurate feedback produced skin resistance level changes consistent with the type of reinforcement employed. However, operant control was not clearly sustained subsequent to a reversal in the type of tonic level change reinforced. Some problems related to the clinical application of skin resistance level training are discussed.Portions of this paper were presented at the meeting of the Midwestern Psychological Association, Chicago, 1973.  相似文献   

15.
Effect of body posture on respiratory impedance   总被引:1,自引:0,他引:1  
The effects of posture on the mechanics of the respiratory system are not well known, particularly in terms of total respiratory resistance. We have measured respiratory impedance (Zrs) by the forced random noise excitation technique in the sitting and the supine position in 24 healthy subjects. Spirometry and lung volumes (He-dilution technique) were also measured in both postures. The equivalent resistance (Rrs), compliance (Crs), and inertance (Irs) were also calculated by fitting each measured Zrs to a linear series model. When subjects changed from sitting to the supine position, the real part of Zrs increased over the whole frequency band. The associated equivalent resistance, Rrs, increased by 28.2%. The reactance decreased for frequencies lower than 18 Hz and increased for higher frequencies. Consequently, Crs decreased by 38.7% and Irs increased by 15.6%. All of these parameter differences were significant (P less than 0.001). A covariance analysis showed that a significant amount of the postural change in Rrs and Crs can be explained by the reduction of functional residual capacity (FRC). This indicates that the observed differences on Zrs can in part be explained be a shift of the operating point of the respiratory system induced by the decrease in the FRC.  相似文献   

16.
Inspiratory duration (TI), cycle duration (TTOT), and tidal volume (VT) were continuously measured in 11 normal subjects during 400 respiratory cycles. Small breath to breath changes in these variables were separately analyzed. For each of these variables, successive observations are not statistically independent; "large" values tend to be followed by "large" values. A respiratory feedback may be involved in this sequential dependence. In that case, any known system of respiratory control could be associated with it, even those with time constant or delay longer than one cycle duration.  相似文献   

17.
The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.  相似文献   

18.
Adaptation to the reflex effects of sustained changes in lung volume on inspiratory duration (TI), expiratory duration (TE), and the phrenic neurogram was examined. Test inflations in gallamine-paralyzed dogs anesthetized with pentobarbital sodium were made during a 6-min trial while the animal was not ventilated: 2 min at functional residual capacity (FRC), 2 min at elevated airway pressure, and 2 min back at FRC. The dogs were hyperoxygenated and arterial PCO2 was kept constant by an infusion of tris (hydroxymethyl) aminomethane. The maintained inflations produced minimal changes in TI. On return to FRC, TI was prolonged in proportion to the magnitude of the prior inflation. In contrast, inflation produced marked prolongation of TE, which then adapted back toward preinflation values. On return to FRC, TE shortened initially to values below control. This shortening increased with greater prior lung inflations. The times to reestablish steady-state values upon return to FRC differed for TI (14.8 +/- 4.6 s) and TE (33.8 +/- 12.7 s). The magnitude of the phrenic neurogram at a fixed time from onset of inspiration and its slope were unchanged with inflation. These results indicate that respiratory phase durations are influenced not only by pulmonary afferent input within each respiratory cycle but also by prior vagal afferent activity that engages central processes with long, although different, time constants. Afferent input to the slow central process controlling TI is not gated to only one phase of the respiratory cycle.  相似文献   

19.
To study the effect of increases in lung volume on solute uptake, we measured clearance of 99mTc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosol (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure [12 cmH2O continuous positive airway pressure (CPAP)] or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH2O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH2O; clearance and FRC were determined at CPAP of 12 cmH2O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method.  相似文献   

20.
Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 +/- 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 +/- 0.40 liter (P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 +/- 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 +/- 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest (P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号