首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the determination of the nucleotide sequence of two genes (pgtB and pgtC) contained within the 3.4-kilobase DNA segment sandwiched between the transporter gene, pgtP, and the regulatory gene, pgtA. These two genes are involved in the regulation of expression of phosphoglycerate transport in Salmonella typhimurium. The sequence indicates the presence of two large open reading frames, potentially coding for two polypeptides of 397 and 593 amino acid residues. The two gene products were identified by using the bacteriophage T7 RNA polymerase-T7 promoter coupled system of Tabor and Richardson, and the observed apparent mass of 45 and 69 kilodaltons correlated well with the respective open reading frames. The cellular location of these two polypeptides was directly determined, and the polypeptides were found to be associated with the membrane. Although overall these polypeptides appear to be hydrophilic, there is one hydrophobic transmembrane segment in the smaller polypeptide and four such segments in the larger polypeptide which can account for their association with the membrane. In the accompanying paper, we present genetic evidence that pgtB and pgtC genes are involved in the induction of the pgtP expression by modulating derepressor activity.  相似文献   

2.
G Q Yu  J S Hong 《Gene》1986,45(1):51-57
A recent study from this laboratory (G-q. Yu, D. Goldrick, H.R. Kaback and J-s. Hong, in preparation) indicates that the externally induced phosphoglycerate transport system (pgt) of Salmonella typhimurium is positively regulated by the activator gene, pgtA, and that the pgtA is localized in the SalI-PstI restriction fragment 3.0 kb from the permease gene, pgtP. In this paper, we describe the identification of the activator gene and its gene product and the determination of the complete nucleotide (nt) sequence of the activator gene as well as of a downstream gene not required for pgtP expression. The amino acid sequence of the activator based on the nt sequence shows an N-terminal signal-like sequence which is apparently not cleaved and three potential transmembrane sequences in the C-terminal half of the protein based on the hydropathy analysis.  相似文献   

3.
S Niu  S Q Jiang    J Hong 《Journal of bacteriology》1995,177(15):4297-4302
PgtC is one of the three components of the atypical "two-component" pgt regulatory system. To investigate whether functional PgtC required for the induction of pgtP expression could be bypassed in the signal transduction process, we sought, and succeeded in isolating, intergenic suppressors arising in the low-copy mini-F plasmid, pSJ11, bearing the entire pgt system except for a 168-bp deletion near the end of the pgtC gene. By transport assays, these suppressors were found to confer constitutive pgtP expression. Intriguingly, all five mutations reside near the 5' end of the pgtB gene, at codons 19 and 21. One mutation alters Arg-19 to Gln, two alter Ala-21 to Thr, one alters Ala-21 to Val, and one alters Ala-21 to Ile. Appropriate strains in which the pgtP promoter was fused to lacZ and which bore the pgtB mutations with and without mutations in pgtC and pgtA genes were constructed, and the epistatic relationships of the wild-type pgtC allele, a mutant pgtA allele, and an essentially total deletion of pgtC to the constitutive pgtB mutations were determined. In the mutant strains bearing the Ala-21 --> Ile and Ala-21 --> Val substitutions, the level of constitutive pgtP-lacZ reporter expression was not affected by the presence of the wild-type pgtC allele, nor was it affected by the total absence of PgtC in the case of the Ala-21 --> Val alteration examined; however, in the mutant strains bearing the Ala-21 --> Thr and the Arg-19 --> Gln substitutions, the extent of constitutive pgtP-lacZ reporter expression was markedly enhanced by the presence of wild-type pgtC allele and, in the case of the Arg-19 -->Gln change examined, by the total absence of PgtC as well. These results indicate that PgtC contains no domain necessary for the kinase activity; that PgtB can be activated in the absence of PgtC mutational alterations of the protein itself; and that PgtB and PgtC interact in the signaling process, with PgtC functioning to activate and modulate the kinase activity of Pgtb. In all strains, the replacement of the wild type pgtA allele with a mutant pgtA allele completely abolished expression of the pgtP-lacZ reporter, indicating that functional pgtA is essential for the constitutivity. His-457 of PgtB, a potential site of autophosphorylation, is also required for the constitutivity because its change to Val drastically reduced pgtP-lacZ reporter expression. The structural basis for the activation of the altered PgtB is discussed in terms of putative structure of PgtB in the membrane.  相似文献   

4.
5.
6.
7.
8.
The 3.6 kb HindIII DNA fragment of B. sphaericus 1593M chromosomal DNA bears two genes encoding two polypeptides of 41.9 kDa (protein "42") and 51.4 kDa (protein "51"). DNA fragments carrying only one of these two genes when expressed in E. coli yield products that are inactive towards Culex larvae. The larvicidal activity is recovered when Triton X-100 treated E. coli cells containing each one of the two genes are incubated together. In E. coli these two polypeptides are acting synergistically. The protein "51" appears to be involved in the maturation of protein "42" for expression of the larvicidal activity. In B. subtilis however the toxicity is expressed by cells carrying only the gene coding for protein "42". There is no need of the "51" gene product for the maturation of the "42" polypeptide, suggesting that the maturation is most likely accomplished by host enzymes.  相似文献   

9.
10.
11.
12.
13.
Eubacterium sp. strain VPI 12708 is an anaerobic intestinal bacterium which possesses inducible bile acid 7-dehydroxylation activity. Several new polypeptides are produced in this strain following induction with cholic acid. Genes coding for two copies of a bile acid-inducible 27,000-dalton polypeptide (baiA1 and baiA2) have been previously cloned and sequenced. We now report on a gene coding for a third copy of this 27,000-dalton polypeptide (baiA3). The baiA3 gene has been cloned in lambda DASH on an 11.2-kilobase DNA fragment from a partial Sau3A digest of the Eubacterium DNA. DNA sequence analysis of the baiA3 gene revealed 100% homology with the baiA1 gene within the coding region of the 27,000-dalton polypeptides. The baiA2 gene shares 81% sequence identity with the other two genes at the nucleotide level. The flanking nucleotide sequences associated with the baiA1 and baiA3 genes are identical for 930 bases in the 5' direction from the initiation codon and for at least 325 bases in the 3' direction from the stop codon, including the putative promoter regions for the genes. An additional open reading frame (occupying from 621 to 648 bases, depending on the correct start codon) was found in the identical 5' regions associated with the baiA1 and baiA3 clones. The 5' sequence 930 bases upstream from the baiA1 and baiA3 genes was totally divergent. The baiA2 gene, which is part of a large bile acid-inducible operon, showed no homology with the other two genes either in the 5' or 3' direction from the polypeptide coding region, except for a 15-base-pair presumed ribosome-binding site in the 5' region. These studies strongly suggest that a gene duplication (baiA1 and baiA3) has occurred and is stably maintained in this bacterium.  相似文献   

14.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

15.
16.
We have shown by genetic mapping, molecular cloning, and DNA sequencing that four Escherichia coli mutants, which express the adaptive response to alkylation damage constitutively, are mutated in the ada gene. All four mutant ada genes have two GC to AT transition mutations in the coding region and encode altered Ada proteins with two amino acid substitutions in the N-terminal domain. E. coli carrying the mutated ada genes on recombinant plasmids overexpressed both the mutated ada gene and the chromosomal alkA gene. This observation indicates that the mutant Ada proteins act as strong positive regulators of the ada and alkA genes in the absence of DNA alkylation. One mutant protein, Ada-11, was shown to be a strong activator of ada gene expression in a cell-free system. An altered pattern of tryptic digestion of the Ada-11 protein compared with the wild-type Ada protein suggested that it has a different conformation. One amino acid substitution, namely methionine residue 126 replaced by isoleucine, occurred in all four mutant Ada proteins, and this mutation alone was sufficient to convert the Ada protein into a strong activator of ada and alkA gene expression in vivo.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号