首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was to determine whether individual rotavirus capsid proteins could stimulate protection against rotavirus shedding in an adult mouse model. BALB/c mice were intranasally or intramuscularly administered purified Escherichia coli-expressed murine rotavirus strain EDIM VP4, VP6, or truncated VP7 (TrVP7) protein fused to the 42.7-kDa maltose-binding protein (MBP). One month after the last immunization, mice were challenged with EDIM and shedding of rotavirus antigen was measured. When three 9-microg doses of one of the three rotavirus proteins fused to MBP were administered intramuscularly with the saponin adjuvant QS-21, serum rotavirus immunoglobulin G (IgG) was induced by each protein. Following EDIM challenge, shedding was significantly (P = 0.02) reduced (i.e., 38%) in MBP::VP6-immunized mice only. Three 9-micrograms doses of chimeric MBP::VP6 or MBP::TrVP7 administered intranasally with attenuated E. coli heat-labile toxin LT(R192G) also induced serum rotavirus IgG, but MBP::VP4 immunization stimulated no detectable rotavirus antibody. No protection against EDIM shedding was observed in the MBP::TrVP7-immunized mice. However, shedding was reduced 93 to 100% following MBP::VP6 inoculation and 56% following MBP::VP4 immunization relative to that of controls (P = <0.001). Substitution of cholera toxin for LT(R192G) as the adjuvant, reduction of the number of doses to 1, and challenge of the mice 3 months after the last immunization did not reduce the level of protection stimulated by intranasal administration of MBP::VP6. When MBP::VP6 was administered intranasally to B-cell-deficient microMt mice that made no rotavirus antibody, shedding was still reduced to <1% of that of controls. These results show that mice can be protected against rotavirus shedding by intranasal administration of individual rotavirus proteins and that this protection can occur independently of rotavirus antibody.  相似文献   

2.
ABSTRACT. The purpose of this research was to determine whether mice could be protected from lethal challenge with Naegleria fowleri by prior intranasal exposure to pathogenic and nonpathogenic Naegleria. Mortality ranged from 0 to 100% for mice inoculated intranasally (i.n.) with 5 × 103 amebae of 13 human isolates of N. fowleri. Mice were immunized and challenged i.n. using live amebae of strains of low, medium, and high virulence. The greatest protection against lethal challenge was afforded by three immunizing doses of 103 amebae per dose of the strain of medium virulence. Nonpathogenic N. gruberi also was used to immunize mice i.n. against lethal challenge with N. fowleri. Protection was greater following immunization with N. gruberi than it was after immunization with N. fowleri, suggesting that nonpathogenic N. gruberi may be a better immunogen in protecting mice against lethal naeglerial challenge.  相似文献   

3.
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4+ and CD8+ T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 109, 1010 and 1011 CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 1011 CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.  相似文献   

4.
Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.  相似文献   

5.
Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.  相似文献   

6.
Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1–H17) and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1–H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses.  相似文献   

7.
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N'',N''-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.  相似文献   

8.
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.  相似文献   

9.
We determined the capacity of microcapsules formed by the combination of sodium alginate, an aqueous anionic polymer, and spermine hydrochloride, an aqueous cationic amine, to enhance protection against rotavirus challenge in mice. Adult BALB/c mice were orally inoculated with either free or microencapsulated rotavirus (simian rotavirus strain RRV) and challenged 6 or 16 weeks later with murine rotavirus strain EDIM. Virus-specific humoral immune responses were determined at the time of challenge and 4 days after challenge by intestinal fragment culture. We found that spermine-alginate microcapsules enhanced protection against challenge 16 weeks after immunization but not 6 weeks after immunization. Quantities of virus-specific immunoglobulin A produced by small intestinal lamina propria lymphocytes were correlated with the degree of protection against challenge afforded by spermine-alginate microcapsules. Possible mechanisms by which microcapsules enhance protection against rotavirus challenge are discussed.  相似文献   

10.
Intranasal immunization of mice with a chimeric VP6 protein and the mucosal adjuvant Escherichia coli heat labile toxin LT(R192G) induces nearly complete protection against murine rotavirus (strain EDIM [epizootic diarrhea of infant mice virus]) shedding for at least 1 year. The aim of this study was to identify the protective lymphocytes elicited by this new vaccine candidate. Immunization of mouse strains lacking one or more lymphocyte populations revealed that protection was dependent on alphabeta T cells but mice lacking gammadelta T cells and B cells remained fully protected. Furthermore, depletion of CD8 T cells in immunized B-cell-deficient mice before challenge resulted in no loss of protection, while depletion of CD4 T cells caused complete loss of protection. Therefore, alphabeta CD4 T cells appeared to be the only lymphocytes required for protection. As confirmation, purified splenic T cells from immunized mice were intraperitoneally injected into Rag-2 mice chronically infected with EDIM. Transfer of 2 x 10(6) CD8 T cells had no effect on shedding, while transfer of 2 x 10(5) CD4 T cells fully resolved shedding in 7 days. Interestingly, transfer of naive splenic CD4 T cells also resolved shedding but more time and cells were required. Together, these results establish CD4 T cells as effectors of protection against rotavirus after intranasal immunization of mice with VP6 and LT(R192G).  相似文献   

11.
Infants are protected from a severe respiratory syncytial virus (RSV) infection in the first months of life by maternal antibodies or by prophylactically administered neutralizing antibodies. Efforts are under way to produce RSV-specific antibodies with increased neutralizing capacity compared to the currently licensed palivizumab. While clearly beneficial during primary infections, preexisting antibodies might affect the onset of adaptive immune responses and the ability to resist subsequent RSV infections. Therefore, we addressed the question of how virus neutralizing antibodies influence the priming of subsequent adaptive immune responses. To test a possible role of the neonatal Fc receptor (FcRn) in this process, we compared the responses in C57BL/6 wild-type (WT) and FcRn−/− mice. We observed substantial virus-specific T-cell priming and B-cell responses in mice primed with RSV IgG immune complexes resulting in predominantly Th1-type CD4+ T-cell and IgG2c antibody responses upon live-virus challenge. RSV-specific CD8+ T cells were primed as well. Activation of these adaptive immune responses was independent of FcRn. Thus, neutralizing antibodies that localize to the airways and prevent infection-related routes of antigen processing can still facilitate antigen presentation of neutralized virus particles and initiate adaptive immune responses against RSV.  相似文献   

12.
To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 μg of VLP given at weekly intervals to anesthetized mice induced high (>104) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-μg VLP systemic priming followed by two 5-μg VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.  相似文献   

13.
Influenza virus-like particles (VLPs) are a promising cell culture-based vaccine, and the skin is considered an attractive immunization site. In this study, we examined the immunogenicity and protective efficacy of influenza VLPs (H1N1 A/PR/8/34) after skin vaccination using vaccine dried on solid microneedle arrays. Coating of microneedles with influenza VLPs using an unstabilized formulation was found to decrease hemagglutinin (HA) activity, whereas inclusion of trehalose disaccharide preserved the HA activity of influenza VLP vaccines after microneedles were coated. Microneedle vaccination of mice in the skin with a single dose of stabilized influenza VLPs induced 100% protection against challenge infection with a high lethal dose. In contrast, unstabilized influenza VLPs, as well as intramuscularly injected vaccines, provided inferior immunity and only partial protection (≤40%). The stabilized microneedle vaccination group showed IgG2a levels that were 1 order of magnitude higher than those of other groups and had the lowest lung viral titers after challenge. Also, levels of recall immune responses, including hemagglutination inhibition titers, neutralizing antibodies, and antibody-secreting plasma cells, were significantly higher after skin vaccination with stabilized formulations. Therefore, our results indicate that HA stabilization, combined with vaccination via the skin using a vaccine formulated as a solid microneedle patch, confers protection superior to that with intramuscular injection and enables potential dose-sparing effects which are reflected by pronounced increases in rapid recall immune responses against influenza virus.Influenza is a major health threat among infectious diseases, posing a significant burden for public health worldwide. Over 200,000 hospitalizations and approximately 36,000 deaths are estimated to occur annually in the United States alone (48, 49). Vaccination is the most cost-effective measure for controlling influenza. However, the influenza vaccine needs to be updated and manufactured every year due to changes in circulating viral strains. Current influenza vaccines rely on egg substrate-based production, a lengthy process with limited capacity that can cause shortages in available vaccine supplies. The recent 2009 outbreak of H1N1 influenza virus is a good example of the urgent need to develop a more effective vaccine platform and vaccination method (38).Influenza virus-like particles (VLPs) have been suggested as a promising alternative candidate to current influenza vaccines. Influenza VLPs are noninfectious particles that mimic the virus in structure and morphology, can be produced using an egg-free cell culture system, and have been shown to be highly immunogenic, inducing protective immunity (9, 15, 19, 27, 35, 41, 42, 44). Most current vaccines are administered intramuscularly to humans in liquid formulations using hypodermic needles or syringes. Another strategy to meet the potential need for mass vaccination would be to develop an effective method for vaccine delivery to the skin (4, 8, 32, 50, 52). The skin is considered an important peripheral immune organ rich in potent immune-inducing cells, including Langerhans cells (LCs), dermal dendritic cells (DCs), and keratinocytes (5, 13, 14, 22). LCs and DCs residing in the epidermal and dermal layers of the skin have been shown to play an important role in antigen processing and presentation following skin immunization (1, 13, 14, 22). Intradermal (ID) vaccination delivering antigens to the dermal layer of the skin has been performed in many clinical studies and have demonstrated dose-sparing effects in some cases (4, 28, 29). Particularly, ID delivery of vaccines might be more effective in the elderly population (50), the highest risk group for influenza epidemics (49). However, ID delivery of vaccines using hypodermic needles is painful and needs highly trained medical personnel. In addition, more frequent local reactions at the injection site were observed after ID delivery. Therefore, a simple and effective approach for vaccination without using hypodermic needles would be highly desirable.To overcome the skin barrier of the outer layer of stratum corneum, solid microneedles were previously coated with inactivated influenza viruses and used to successfully deliver vaccines to the skin, which provided protection comparable to that with conventional intramuscular immunizations (32, 52). Other vaccines have also been delivered using microneedles (17, 17a), but VLPs have never been used this way before. Delivery of a powdered form of inactivated influenza vaccines to the skin has also been demonstrated using a high-speed jet delivery device (10). These previous studies used high doses of vaccines, possibly due to the instability of vaccines in dry formulations.Influenza hemagglutinin (HA) is responsible for attachment of the virus to sialic acid-containing receptors on target cells. However, it is not well understood how functional activity of HA affects the immunogenicity of influenza VLP vaccines. For the first time in this study, we investigated the effect of HA stability, immune responses, and protective efficacies of solid-microneedle VLP vaccines containing H1 HA as a major influenza viral component after delivery to the skin in comparison to results with intramuscular immunization. We found that the functional integrity of HA in influenza VLPs significantly influenced the immunological and protective outcomes for both microneedle and intramuscular vaccination. In addition, we have observed differential outcomes contributing to the protective immunity by the delivery of HA-stabilized VLPs to the skin in terms of the types of immune responses, recall antibody responses, and viral clearance at an early time point after challenge compared to those induced by intramuscular immunization.  相似文献   

14.
人类轮状病毒基因 DNA免疫的初步研究   总被引:2,自引:0,他引:2  
本文研究人类轮状病毒基因DNA免疫及应用.通过构建重组质粒pCI/vp7,pCI/vp4及pCI/vp6,以肌注法导入BALB/c小鼠肌肉组织,其中pCI/vp7及pCI/vp4能有效引起机体免疫应答,而且对轮状病毒Wa株有一定中和效应.从本次试验的结果来看,人类轮状病毒DNA疫苗能作为预防病毒性小儿腹泻的一种手段.  相似文献   

15.
本文研究人类轮状病毒基因DNA免疫及应用。通过构建重组质粒pCI/vp7,pCI/vp4及pCI/vp6,以肌注法导入BALB/c小鼠肌肉组织,其中pCI/vp7及pCI/vp4能 有效引起机体免疫应答,而且对轮状病毒Wa株有一定中和效应。从本次试验的结果来看 ,人类轮状病毒DNA疫苗能作为预防病毒性小儿腹泻的一种手段。  相似文献   

16.
Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP) that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s) targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.  相似文献   

17.
Log-phase cells of Pasteurella multocida strain P-1059 were used to prepare isolated culture filtrate, cell wall, and cytoplasmic components. Culture filtrate was further separated by column chromatography. A portion of cytoplasm and culture filtrate was conjugated to ferritin by means of metaxylylene diisocyanate. Cell walls induced more protection in mice than the conjugated or unconjugated cytoplasm or culture filtrate. The cell walls caused edema and erythema when given intradermally in rabbits, whereas cytoplasm and culture filtrate produced dermal necrosis. The first of four chromatographically separated fractions of culture filtrate was possibly more immunogenic in mice than cell walls. This fraction was less reactive intradermally in rabbits than cell walls but more reactive than the other fractions.  相似文献   

18.
Vaccination with DNA and recombinant vaccinia viruses (rec.VV) has been studied with the coxsackievirus B3 (CVB3) model system. Plasmids encoding all structural proteins of CVB3, when injected intramuscularly, induced only low levels of virus-specific antibodies. However, DNA vaccination with the major structural protein VP1 protected 72.2% of mice from lethal challenge, whereas VP1 expressed by rec.VV was much less efficient.  相似文献   

19.
为探讨鼻腔接种伤寒杆菌Fe-SOD对鼠伤寒杆菌攻击小鼠的交叉免疫保护作用,用IL-1作为佐剂,将伤寒杆菌Fe-SOD经鼻腔接种小鼠,再以不同剂鼠伤寒杆菌攻击,观察小鼠的存活情况,当用IL-1作为佐剂时,经鼻腔接种伤寒杆菌Fe-SOD的小鼠在2LD50鼠伤寒杆菌攻击后,3天和7天的存活率均明显高于对照组(P<0.01或P<0.05),当以5LD50鼠直菌攻击时,小鼠7天的存活率明显高于对照组(P<0.01)。结果说明伤寒杆菌Fe-SOD经鼻腔接种后对鼠伤寒杆菌的攻击可产生一定的免疫保护作用,也进一步说明了Fe-SOD是沙门氏菌的共同保护性抗原。  相似文献   

20.
为建立小鼠轮状病毒(Rotavirus,RV)感染动物模型,研究可同时表达轮状病毒NSP4 (Nonstructural protein 4)和VP7(Viral protein 7)的重组腺病毒疫苗免疫孕鼠后对新生乳鼠感染RV的被动保护作用.新生乳鼠口服异源株轮状病毒Wa、ZTR-68或SA11株后(分2次给予,每次含5×104 CCID50的RV),观察乳鼠是否有腹泻症状、肠道病理变化,检测乳鼠粪便排毒百分率;另以重组腺病毒rAd-NSP4-VP7免疫孕鼠后,检测母鼠血清抗体产生情况,并对比乳鼠粪便中RV抗原检出率初步评价疫苗的被动免疫保护作用.发现口服异源株RV的乳鼠未出现类似人类婴幼儿感染后的明显腹泻症状,但在粪便中可检测到RV抗原的存在(Wa、ZTR-68攻毒组均超过80%).经rAd-NSP4-VP7被动免疫的乳鼠接受Wa和ZTR-68攻毒后其粪便中的RV检出率比未受到被动免疫保护的对照组降低(P<0.05).rAd-NSP4-VP7重组腺病毒免疫母鼠可显示出对孕鼠感染RV的被动免疫保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号