首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

2.
In the presence of 1 microM ( +/- )-pindolol [to block 5-hydroxytryptamine (5-HT, serotonin) 5-HT 1A and 5-HT 1B receptors] and 100 nM mesulergine (to block 5-HT 1C receptors), 2.0 nM [3H]5-HT binding to rat cortical homogenates is specific, saturable, and reversible. Scatchard analysis of [3H]5-HT binding, in the presence of 1 microM ( +/- )-pindolol and 100 nM mesulergine, produced a KD of 3.2 nM and Bmax of 43 fmol/mg protein. Distribution studies show this site to be present in most rat brain regions. This site is also detectable in human caudate. The pharmacological profile of this site is distinct from the previously identified 5-HT receptor subtypes. Compounds with high affinity for 5-HT 1A (8-hydroxydipropylaminotetralin), 5-HT 1B (trifluoromethylphenylpiperazine), 5-HT 1C (mesulergine), 5-HT 2 (4-bromo-2,5-dimethoxyphenylisopropylamine), and 5-HT3 (ICS 205-930) receptors have low affinity for this site. These data suggest the presence of an additional, previously unidentified, 5-HT binding site in rat and human brain tissue. This putative novel 5-HT receptor has a similar pharmacology to the "5-HT 1D" site detected in bovine brain by Heuring and Peroutka.  相似文献   

3.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

4.
[3H]Serotonin (5-hydroxytryptamine, [3H]5-HT) was used as a radioligand probe of brain 5-HT receptors in homogenates of human cortical tissue. Two binding sites were detected in the presence of 1 microM pindolol (to block 5-HT1A and 5-HT1B receptors), and 100 nM mesulergine (to block 5-HT1C and 5-HT2 receptors). One of these sites demonstrated high affinity for 5-carboxyamidotryptamine (5-CT) and ergotamine, consistent with the known pharmacology of the 5-HT1D receptor; the second site demonstrated low affinity for 5-CT and ergotamine. Computer-assisted analyses indicated that both drugs displayed high affinities (Ki values of 1.1 nM and 0.3 nM for 5-CT and ergotamine, respectively) for 55% of the sites and low affinities (Ki values of 910 nM and 155 nM for 5-CT and ergotamine, respectively) for 45% of the sites. To investigate the non-5-HT1D component of the binding, 100 nM 5-CT (to block 5-HT1A, 5-HT1B, and 5-HT1D receptors) was coincubated with [3H]5-HT, membranes, and mesulergine. The remaining [3H]5-HT binding (hereafter referred to as "5-HT1E") displayed high affinity and saturability (KD, 5.3 nM; Bmax, 83 fmol/mg) in human cortical tissue. Competition studies with nonradioactive drugs indicated that, of the drugs tested, 5-CT and ergotamine displayed the highest selectivity for the 5-HT1D site versus the 5-HT1E site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

6.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

7.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

8.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

9.
The inhibition of [3H]5-hydroxytryptamine [( 3H]5-HT) binding in rat brain by 1-[2-(3-bromoacetamidophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine (BrAcTFMPP) and that by spiperone were compared. Spiperone inhibition of [3H]5-HT binding in cortex was consistent with displacement from two sites with dissociation constants (KD) of 24 nM (5-HT-1A site) and 19 microM (5-HT-1B site) for spiperone. BrAcTFMPP also discriminated two subpopulations of [3H]5-HT binding sites with dissociation constants of 0.5 nM and 146 nM for the compound. The proportion of high-affinity sites for each compound represented about 35% of the specific [3H]5-HT binding. In the presence of 1 microM spiperone, a concentration that saturates the 5-HT-1A sites while having a minimal effect on 5-HT-1B sites, BrAcTFMPP displaced [3H]5-HT from a single site with a KD for BrAcTFMPP of 145 nM. The inhibition of [3H]5-HT binding by spiperone in the presence of 30 nM BrAcTFMPP was best fit by a single-site model with a KD of 21 microM for spiperone. In corpus striatum, 5-HT-1A sites, as defined with spiperone, represented 15% of the specific [3H]5-HT binding and 30 nM BrAcTFMPP also blocked about 15% of the binding. A significant difference between spiperone and BrAcTFMPP was their affinity for 5-HT-2 receptors. BrAcTFMPP (KD = 41 nM) had an 80-fold lower affinity for these sites than spiperone (KD = 0.5 nM). Thus, BrAcTFMPP and spiperone discriminate the same two subpopulations of [3H]5-HT binding sites and BrAcTFMPP displays a high affinity and a selectivity for 5-HT-1A sites versus both 5-HT-1B and 5-HT-2 sites.  相似文献   

10.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

11.
Rat and human serotonin 5-HT2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT(2C-INI)) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT(2C--VGV)). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT(2C-INI) receptor and eightfold over basal levels through the 5-HT(2C-VGV) receptor but produced similar maximal levels of inositol phosphate. 5-HT competition for [3H]mesulergine binding to 5-HT(2C-INI) best fit a two-site analysis with K(H) = 7.6 nM and K(L) = 160 nM, whereas 5-HT(2C-VGV) best fit a one-site model with Ki = 163 nM. [3H]5-HT labeled 36% of the total population of 5-HT(2C-INI) receptors labeled by [3H]mesulergine but only 12% of 5-HT(2C-VGV) receptors. [H]5-HT K(D) values increased from 5.1 nM for 5-HT(2C-INI) to 20 nM for 5-HT(2C-VGV). [3H]Mesulergine K(D) values were the same for both isoforms. 5-HT EC50 values for inositol phosphate production increased from 6.1 nM for 5-HT(2C-INI) to 30 nM for 5-HT(2C-VGV). These results demonstrate that RNA editing decreases 5-HT2C receptor basal activity, agonist affinity, and potency, indicating that RNA editing may play a role in regulating serotonergic signal transduction and response to drug therapy.  相似文献   

12.
Three pharmacologically distinct high-affinity [3H]serotonin ([3H]5-HT) binding sites were identified in spinal cord synaptosomes. [3H]5-HT competition studies using selective 5-HT1A receptor ligands indicated that approximately 25% of high-affinity synaptosomal [3H]5-HT binding was inhibited by 5-HT1A-selective compounds, an estimate consistent with [3H](+-)-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) saturation experiments in which 5-HT1A receptors were directly labeled. [3H]5-HT competition studies using high-affinity 5-HT1B compounds performed in the presence of 100 nM 8-OH-DPAT (to block 5-HT1A receptors) indicated that approximately 26% of all specific, high-affinity [3H]5-HT binding to spinal cord synaptosomes was to 5-HT1B receptors. [3H]5-HT competition studies performed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (to block 5-HT1A and 5-HT1B receptors, respectively) indicated that the remaining 49% of [3H]5-HT binding did not possess the pharmacologic profile previous reported for 5-HT1C, 5-HT1D, 5-HT1E, 5-HT2, or 5-HT3 receptors. This residual 49% of [3H]5-HT binding to spinal cord synaptosomes observed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (subsequently referred to as "5-HT1S") displayed high affinity and saturability (KD = 4.7 nM) in association/dissociation and saturation experiments. Addition of 300 microM GTP or the nonhydrolyzable form of GTP, 5'-guanylylimidodiphosphate, inhibited [3H]5-HT binding to 5-HT1S receptors in saturation experiments by 35 and 57%, respectively, whereas ATP was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.  相似文献   

14.
Abstract: The immunological properties and the functional role of the first (loop I) and second (loop II) extracellular loops of the human serotonin 5-HT1A receptor were studied with three populations of anti-peptide antibodies: Ab-1 (loop I; sequence Y-Q-V-L-N-K-W-T-L-G-Q-V-T-C-D-L; residues 96–111), Ab-2 (loop II; sequence G-W-R-T-P-E-D-R-S-D-P-D-A-C-T-I-S-K-D-H-G; residues 173–193), and Ab-12 (produced against loop I but cross-reacting with loop II). Chemical modification of peptide amino acid residues revealed the importance of the polyanionic stretch near the N-terminal domain of loop II for Ab-2 antibody binding and the role of the cysteine residues in both loops for the binding of Ab-1 and Ab-12 antibodies. Antibodies Ab-2 and Ab-12 recognized only the nonglycosylated form of the receptor (42 kDa) on immunoblots with transfected HeLa cells expressing the human 5-HT1A receptor but recognized the glycosylated forms (55 and 65 kDa) of rat 5-HT1A receptor from hippocampus membranes. The Ab-1 antibodies recognized no protein band from any cell type studied. Preincubation of transfected HeLa cell membranes with Ab-2 antibodies revealed two affinity binding sites of the 5-HT1A receptor (KDH = 0.54 ± 0.09 nM and KDL = 13.74 ± 4.9 nM) for the agonist 8-hydroxy-2-(di-n-[3H]propylamino)tetralin ([3H]8-OH-DPAT) binding, but Ab-1 and Ab-12 revealed only one site (KD of ≈2.5 nM). In contrast to the Ab-2 antibodies, Ab-1 and Ab-12 antibodies decreased the Bmax of the [3H]8-OH-DPAT binding to 42 and 31%, respectively. These findings suggest that there are at least two epitopes on the extracellular loops: one inducing a high-affinity state for agonist binding and the other interfering with the accessibility of the ligand binding pocket.  相似文献   

15.
Mechanisms of agonist and inverse agonist action at the serotonin 5-HT1A receptor have been studied using the modulation of guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding in membranes of Chinese hamster ovary (CHO) cells expressing the receptor (CHO-5-HTA1A cells). A range of agonists increased [35S]GTPgammaS binding with different potencies and to different maximal extents, whereas two compounds, methiothepin and spiperone, inhibited both agonist-stimulated and basal [5S]GTPgammaS binding, thus exhibiting inverse agonism. Potencies of agonists to stimulate [35S]GTPgammaS binding in membranes from CHO-5-HT1A cells were reduced by adding increasing concentrations of GDP to assays, whereas changes in sodium ion concentration did not affect agonist potency. The maximal effect of the agonists was increased by increasing sodium ion concentrations. The affinities of agonists in ligand binding assays were unaffected by changes in sodium ion concentration. Increasing GDP in the assays of the inverse agonists increased potency for spiperone to inhibit [35S]GTPgammaS binding and had no effect for methiothepin, in agreement with the sensitivity of these compounds to guanine nucleotides in ligand binding assays. Potencies for these inverse agonists were unaffected by changes in sodium ion concentration. These data were simulated using the extended ternary complex model. These simulations showed that the data obtained with agonists were consistent with these compounds achieving agonism by stabilising the ternary complex. For inverse agonists, the simulations showed that the mechanism for spiperone may be to stabilise forms of the receptor uncoupled from G proteins. Methiothepin, however, probably does not alter the equilibrium distribution of different receptor species; rather, this inverse agonist may stabilise an inactive form of the receptor that can still couple to G protein.  相似文献   

16.
We present evidence that the 5-hydroxytryptamine(1A) (5-HT(1A)) receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY-100635), can induce receptor internalization in a human (h)5-HT(1A) receptor Chinese hamster ovary (CHO-K1) cell system. Exposure of h5-HT(1A) CHO cells to WAY-100635 decreased the cell-surface h5-HT(1A) receptor density in a way that was both time (24-72 h) and concentration (1-100 nm) dependent.[(3)H]WAY-100635 and [(3)H]8-hydroxy-dipropylaminotetralin ([(3)H]8-OH-DPAT) saturation analyses demonstrated a significant reduction (50-60%) in total h5-HT(1A) receptor number in the WAY-100635-treated (100 nm; 72 h) compared with control cells. In WAY-100635-treated cells, the 8-OH-DPAT-mediated inhibition of forskolin (FSK)-stimulated cAMP accumulation was right-shifted and the maximal inhibitory response of 8-OH-DPAT was impaired compared with control cells. Similar results were obtained for 8-OH-DPAT-mediated Ca(2+) mobilization after WAY-100635 treatment. h5-HT(1A) receptors labeled with [(3)H]WAY-100635, as well as [(3)H]4-(2'-Methoxy)-phenyl-1-[2'-(N-2'-pyridinyl)-p-fluorobenzamido]ethyl-piperazine (MPPF), exhibited a time-dependent rate of cellular internalization that was blocked by endocytotic suppressors and was pertussis-toxin insensitive. In contrast, quantitative autoradiographic studies demonstrated that chronic treatment of rats with WAY-100635 for two weeks produced a region-specific increase in the 5-HT(1A) receptor density. In conclusion, prolonged exposure of an h5-HT(1A) cell-based system to the 5-HT(1A) antagonist, WAY-100635, induced a paradoxical internalization of cell surface receptor resulting in depressed functional activity. This suggests that an antagonist can influence 5-HT(1A) receptor recycling in vitro differently to in vivo regulatory conditions.  相似文献   

17.
Mesulergine displays approximately 50-fold higher affinity for the rat 5-HT2 receptor than for the human receptor. Comparison of the deduced amino acid sequences of cDNA clones encoding the human and rat 5-HT2 receptors reveals only 3 amino acid differences in their transmembrane domains. Only one of these differences (Ser----Ala at position 242 of TM5) is near to regions implicated in ligand binding by G protein-coupled receptors. We investigated the effect of mutating Ser242 of the human 5-HT2 receptor to an Ala residue as is found in the rat clone. Both [3H]mesulergine binding and mesulergine competition of [3H]ketanserin binding showed high affinity for rat membranes and the mutant human clone but low affinity for the native human clone, in agreement with previous studies of human postmortem tissue. These studies suggest that a single naturally occurring amino acid change between the human and the rat 5-HT2 receptors makes a major contribution to their pharmacological differences.  相似文献   

18.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

19.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

20.
W C Xiong  D L Nelson 《Life sciences》1989,45(16):1433-1442
[3H]5-HT binding sites were analyzed in membranes prepared from the rabbit caudate nucleus (CN). [3H]5-HT labeled both 5-HT1A and 5-HT1C recognition sites, defined by nanomolar affinity for 8-OH-DPAT and mesulergine respectively; however, these represented only a fraction of total specific [3H]5-HT binding. Saturation experiments of [3H]5-HT binding in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine to block 5-HT1A and 5-HT1C sites revealed that non-5-HT1A/non-5-HT1C sites represented about 60% of the total 5-HT1 sites and that they exhibited saturable, high affinity, and homogeneous binding. The pharmacological profile of the non-5-HT1A/non-5-HT1C sites (designated 5-HT1R) also differed from that of 5-HT1B and 5-HT2 sites, but was similar to that of the 5-HT1D site. However, significant differences existed between the 5-HT1D and 5-HT1R sites for their Ki values for spiperone, spirilene (an analog of spiperone), metergoline, and methiothepin. The study of modulatory agents (calcium and GTP) also showed differences between the 5-HT1R and 5-HT1D sites. For example, the effects of GTP on agonist binding to the 5-HT1R sites were less than on the 5-HT1D sites in bovine caudate. In addition, calcium enhanced the effects of GTP on the 5-HT1R sites, whereas calcium inhibited the GTP effect on the 5-HT1D sites. The present findings demonstrate the presence of a high-affinity [3H]5-HT binding site in rabbit CN, designated 5-HT1R, that is different from previously defined 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, and 5-HT2 sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号