首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
BACKGROUND: It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS: By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS: We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.  相似文献   

2.
Most neuronal models of learning assume that changes in synaptic strength are the main mechanism underlying long-term memory (LTM) formation. However, we show here that a persistent depolarization of membrane potential, a type of cellular change that increases neuronal responsiveness, contributes significantly to a long-lasting associative memory trace. The use of a model invertebrate network with identified neurons and known synaptic connectivity had the advantage that the contribution of this cellular change to memory could be evaluated in a neuron with a known function in the learning circuit. Specifically, we used the well-understood motor circuit underlying molluscan feeding and showed that a key modulatory neuron involved in the initiation of feeding ingestive movements underwent a long-term depolarization following behavioral associative conditioning. This depolarization led to an enhanced single cell and network responsiveness to a previously neutral tactile conditioned stimulus, and the persistence of both matched the time course of behavioral associative memory. The change in the membrane potential of a key modulatory neuron is both sufficient and necessary to initiate a conditioned response in a reduced preparation and underscores its importance for associative LTM.  相似文献   

3.
Synaptic plasticity plays a central role in the study of neural mechanisms of learning and memory. Plasticity rules are not invariant over time but are under neuromodulatory control, enabling behavioral states to influence memory formation. Neuromodulation controls synaptic plasticity at network level by directing information flow, at circuit level through changes in excitation/inhibition balance, and at synaptic level through modulation of intracellular signaling cascades. Although most research has focused on modulation of principal neurons, recent progress has uncovered important roles for interneurons in not only routing information, but also setting conditions for synaptic plasticity. Moreover, astrocytes have been shown to both gate and mediate plasticity. These additional mechanisms must be considered for a comprehensive mechanistic understanding of learning and memory.  相似文献   

4.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

5.
Frost W 《Current biology : CB》2006,16(16):R640-R641
A new study of memory traces in an invertebrate challenges convention in two ways: first, by demonstrating a persistent change in synaptic strength that is maintained remotely, via the passive spread of somatic depolarization; and second, by localizing a critical memory trace to neurons located outside the behavioral circuit affected by learning.  相似文献   

6.
The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from ~-70 mV to ~-15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain.  相似文献   

7.
Lipid signaling: sleep, synaptic plasticity, and neuroprotection   总被引:6,自引:0,他引:6  
Increasing evidence indicates that bioactive lipids participate in the regulation of synaptic function and dysfunction. We have demonstrated that signaling mediated by platelet-activating factor (PAF) and cyclooxygenase (COX)-2-synthesized PGE2 is involved in synaptic plasticity, memory, and neuronal protection [Clark GD, Happel LT, Zorumski CF, Bazan NG. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 1992; 9:1211; Kato K, Clark GD, Bazan NG, Zorumski CF. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 1994; 367:175; Izquierdo I, Fin C, Schmitz PK, et al. Memory enhancement by intrahippocampal, intraamygdala or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance. Proc Natl Acad Sci USA 1995; 92:5047; Chen C, Magee CJ, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 2002; 87:2851]. Recently, we found that prolonged continuous wakefulness (primarily rapid eye movement (REM)-sleep deprivation, SD) causes impairments in hippocampal long-term synaptic plasticity and hippocampus-dependent memory formation [McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 2003; 23:9687]. To explore the mechanisms underlying SD-induced impairments, we have studied several bioactive lipids in the hippocampus following SD. It appears that SD causes increases in prostaglandin D2 (PGD2) and 2-arachidonylglycerol (2-AG), and a decrease in PGE2, suggesting that these lipid messengers participate in memory consolidation during REM sleep. We have also explored the formation of endogenous neuroprotective lipids. Toward this aim, we have used ischemia-reperfusion damage and LC-PDA-ESI-MS-MS-based lipidomic analysis and identified docosanoids derived from synaptic phospholipid-enriched docosahexaenoic acid. Some of the docosanoids exert potent neuroprotective bioactivity [Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278:43807; Mukherjee PK, Marcheselli VL, Serhan CN, Bazan, NG. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Nat Acad Sci USA 2004; 101:8491). Taken together, these observations that signaling lipids participate in synaptic plasticity, cognition, and survival indicate that lipid signaling is closely associated with several functions (e.g; learning and memory, sleep, and experimental stroke) and pathologic events. Alterations in endogenous signaling lipids or their receptors resulting from drug abuse lead to changes in synaptic circuitry and induce profound effects on these important functions. In the present article, we will briefly review bioactive lipids involved in sleep, synaptic transmission and plasticity, and neuroprotection, focusing mainly on our experimental studies and how these signaling molecules are related to functions and implicated in some neurologic disorders.  相似文献   

8.
There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.  相似文献   

9.
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.  相似文献   

10.
Activity-dependent synaptic plasticity is known to be important in learning and memory, persistent pain and drug addiction. Glutamate NMDA receptor activation stimulates several protein kinases, which then trigger biochemical cascades that lead to modifications in synaptic efficacy. Genetic and pharmacological techniques have been used to show a role for Ca2+/calmodulin-dependent kinase II (CaMKII) in synaptic plasticity and memory formation. However, it is not known if increasing CaMKII activity in forebrain areas affects behavioral responses to tissue injury. Using genetic and pharmacological techniques, we were able to temporally and spatially restrict the over expression of CaMKII in forebrain areas. Here we show that genetic overexpression of CaMKII in the mouse forebrain selectively inhibits tissue injury-induced behavioral sensitization, including allodynia and hyperalgesia, while behavioral responses to acute noxious stimuli remain intact. CaMKII overexpression also inhibited synaptic depression induced by a prolonged repetitive stimulation in the ACC, suggesting an important role for CaMKII in the regulation of cingulate neurons. Our results suggest that neuronal CaMKII activity in the forebrain plays a role in persistent pain.  相似文献   

11.
In contrast to our increasingly detailed understanding of how synaptic plasticity provides a cellular substrate for learning and memory, it is less clear how a neuron's voltage-gated ion channels interact with plastic changes in synaptic strength to influence behavior. We find, using generalized and regional knockout mice, that deletion of the HCN1 channel causes profound motor learning and memory deficits in swimming and rotarod tasks. In cerebellar Purkinje cells, which are a key component of the cerebellar circuit for learning of correctly timed movements, HCN1 mediates an inward current that stabilizes the integrative properties of Purkinje cells and ensures that their input-output function is independent of the previous history of their activity. We suggest that this nonsynaptic integrative function of HCN1 is required for accurate decoding of input patterns and thereby enables synaptic plasticity to appropriately influence the performance of motor activity.  相似文献   

12.
Regulated RNA translation is critical to provide proteins needed to maintain persistent modification of synaptic strength, which underlies the molecular basis of long-term memory (LTM). Cytoplasmic polyadenylation element-binding proteins (CPEBs) are sequence-specific RNA-binding proteins and regulate translation in various tissues. All four CPEBs in vertebrates are expressed in the brain, including the hippocampal neurons, suggesting their potential roles in translation-dependent plasticity and memory. Although CPEB1 and CPEB3 have been shown to control specific kinds of hippocampus-related LTM, the role of CPEB2 and CPEB4 in learning and memory remains elusive. Thus, we generated CPEB4 knockout (KO) mice and analyzed them using several behavioral tests. No difference was found in the anxiety level, motor coordination, hippocampus-dependent learning and memory between the KO mice and their wild-type (WT) littermates. Electrophysiological recordings of multiple forms of synaptic plasticity in the Schaffer collateral pathway-CA1 neurons also showed normal responses in the KO hippocampal slices. Morphological analyses revealed that the CPEB4-lacking pyramidal neurons possessed slightly elongated dendritic spines. Unlike its related family members, CPEB1 and CPEB3, CPEB4 seems to be dispensable for hippocampus-dependent plasticity, learning and memory.  相似文献   

13.
Synaptic plasticity has a central role in nearly all models of learning and memory. Besides experiments documenting changes in synaptic function during learning, most of the evidence supporting a role for synaptic plasticity in memory comes from manipulations that either enhance or lesion synaptic processes. In the last decade, mouse transgenetics (knock outs and transgenics) have provided compelling evidence that the molecular mechanisms responsible for the induction and stability of synaptic changes have a critical role in the acquisition and storage of information. Here, I will review this literature, with a special focus on studies of hippocampal-dependent learning and memory.  相似文献   

14.
Models for temporary information storage in neuronal populations are dominated by mechanisms directly dependent on synaptic plasticity. There are nevertheless other mechanisms available that are well suited for creating short-term memories. Here we present a model for working memory which relies on the modulation of the intrinsic excitability properties of neurons, instead of synaptic plasticity, to retain novel information for periods of seconds to minutes. We show that it is possible to effectively use this mechanism to store the serial order in a sequence of patterns of activity. For this we introduce a functional class of neurons, named gate interneurons, which can store information in their membrane dynamics and can literally act as gates routing the flow of activations in the principal neurons population. The presented model exhibits properties which are in close agreement with experimental results in working memory. Namely, the recall process plays an important role in stabilizing and prolonging the memory trace. This means that the stored information is correctly maintained as long as it is being used. Moreover, the working memory model is adequate for storing completely new information, in time windows compatible with the notion of “one-shot” learning (hundreds of milliseconds).  相似文献   

15.
Although geographic variation in an organism's traits is often seen as a consequence of selection on locally adaptive genotypes accompanied by canalized development [1], developmental plasticity may also play a role [2, 3], especially in behavior [4]. Behavioral plasticity includes both individual learning and social learning of local innovations ("culture"). Cultural plasticity is the undisputed and dominant explanation for geographic variation in human behavior. It has recently also been suggested to hold for various primates and birds [5], but this proposition has been met with widespread skepticism [6-8]. Here, we analyze parallel long-term studies documenting extensive geographic variation in behavioral ecology, social organization, and putative culture of orangutans [9] (genus Pongo). We show that genetic differences among orangutan populations explain only very little of the geographic variation in behavior, whereas environmental differences explain much more, highlighting the importance of developmental plasticity. Moreover, variation in putative cultural variants is explained by neither genetic nor environmental differences, corroborating the cultural interpretation. Thus, individual and cultural plasticity provide a plausible pathway toward local adaptation in long-lived organisms such as great apes and formed the evolutionary foundation upon which human culture was built.  相似文献   

16.
Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin‐binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n‐cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long‐term potentiation and long‐term depression. Loss of n‐cofilin‐mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n‐cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.  相似文献   

17.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

18.
Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.  相似文献   

19.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

20.
There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections between neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular and molecular bases of learning and memory. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. Here we briefly review these mechanisms and illustrate with a few examples of animal models of neurological disorders how new knowledge about these mechanisms can provide valuable insights into identifying the mechanisms that go awry when memory is deficient, and how, in turn, characterisation of the dysfunctional mechanisms offers prospects to design and evaluate molecular and biobehavioural strategies for therapeutic prevention and rescue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号