首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome bc(1) is an integral membrane protein complex essential for cellular respiration and photosynthesis; it couples electron transfer from quinol to cytochrome c to proton translocation across the membrane. Specific bc(1) inhibitors have not only played crucial roles in elucidating the mechanism of bc(1) function but have also provided leads for the development of novel antibiotics. Crystal structures of bovine bc(1) in complex with the specific Q(o) site inhibitors azoxystrobin, MOAS, myxothiazol, stigmatellin and 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole were determined. Interactions, conformational changes and possible mechanisms of resistance, specific to each inhibitor, were defined. Residues and secondary structure elements that are capable of discriminating different classes of Q(o) site inhibitors were identified for the cytochrome b subunit. Directions in the displacement of the cd1 helix of cytochrome b subunit in response to various Q(o) site inhibitors were correlated to the binary conformational switch of the extrinsic domain of the iron-sulfur protein subunit. The new structural information, together with structures previously determined, provide a basis that, combined with biophysical and mutational data, suggest a modification to the existing classification of bc(1) inhibitors. bc(1) inhibitors are grouped into three classes: class P inhibitors bind to the Q(o) site, class N inhibitors bind to the Q(i) site and the class PN inhibitors target both sites. Class P contains two subgroups, Pm and Pf, that are distinct by their ability to induce mobile or fixed conformation of iron-sulfur protein.  相似文献   

2.
In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.  相似文献   

3.
Poly (ADP‐ribose) polymerase (PARP) inhibitors have provided great clinical benefits to ovarian cancer patients. To date, three PARP inhibitors, namely, olaparib, rucaparib and niraparib have been approved for the treatment of ovarian cancer in the United States. Homologous recombination deficiency (HRD) and platinum sensitivity are prospective biomarkers for predicting the response to PARP inhibitors in ovarian cancers. Preclinical data have focused on identifying the gene aberrations that might generate HRD and induce sensitivity to PARP inhibitors in vitro in cancer cell lines or in vivo in patient‐derived xenografts. Clinical trials have focused on genomic scar analysis to identify biomarkers for predicting the response to PARP inhibitors. Additionally, researchers have aimed to investigate mechanisms of resistance to PARP inhibitors and strategies to overcome this resistance. Combining PARP inhibitors with HR pathway inhibitors to extend the utility of PARP inhibitors to BRCA‐proficient tumours is increasingly foreseeable. Identifying the population of patients with the greatest potential benefit from PARP inhibitor therapy and the circumstances under which patients are no longer suited for PARP inhibitor therapy are important. Further studies are required in order to propose better strategies for overcoming resistance to PARP inhibitor therapy in ovarian cancers.  相似文献   

4.
Synthesis and inhibitory potencies of three types of protease inhibitors of the hepatitis C virus (HCV) full-length NS3 (protease-helicase/NTPase) are reported: (i) inhibitors comprising electrophilic serine traps (pentafluoroethyl ketones, alpha-keto acids, and alpha-ketotetrazoles), (ii) product-based inhibitors comprising a C-terminal carboxylate group, and (iii) previously unexplored inhibitors comprising C-terminal carboxylic acid bioisosteres (tetrazoles and acyl sulfonamides). Bioisosteric replacement with the tetrazole group provided inhibitors equally potent to the corresponding carboxylates, and substitution with the phenyl acyl sulfonamide group yielded more potent inhibitors. The hexapeptide inhibitors Suc-Asp-D-Glu-Leu-Ile-Cha-Nva-NHSO(2)Ph and Suc-Asp-D-Glu-Leu-Ile-Cha-ACPC-NHSO(2)Ph with K(i) values of 13.6 and 3.8 nM, respectively, were approximately 20 times more potent than the corresponding inhibitors with a C-terminal carboxylate and were comparable to the carboxylate-based inhibitor containing the native cysteine, Suc-Asp-D-Glu-Leu-Ile-Cha-Cys-OH (K(i)=28 nM). The acyl sulfonamide group constitutes a very promising C-terminal functionality that allows for prime site optimization.  相似文献   

5.
Six amino acid sequences for trypsin inhibitors isolated from squash, summer squash, zucchini, and cucumber seeds were determined. All these inhibitors along with the two previously sequenced squash inhibitors (1) form the squash inhibitor family. The striking characteristic of the family is that its member inhibitors are very small (29-32 residues, 3 disulfide bridges). The association equilibrium constants with bovine beta trypsin for 6 squash family inhibitors were determined and range from 5.9 X 10(10) to 9.5 X 10(11) M-1.  相似文献   

6.
This paper describes SAR directed design and synthesis of novel beta(1-4)-glucosyltransferase (BGT) inhibitors. The designed inhibitors 1-5 provide conformational mimicry of the transition-state in glucosyltransfer reactions. The compounds were tested for in vitro inhibitory activity against (BGT) and the inhibition kinetics were examined. Three of the designed molecules were found to be potential inhibitors of BGT having IC50 values in micromolar (microM) range. Useful structure-activity relationships were established, which provide guidelines for the design of future generations of inhibitors of BGT.  相似文献   

7.
8.
Three Bowman-Birk type inhibitors (HGGI-I, II and III), which appear in the cotyledons of 120 h germinated horsegram (Dolichos biflorus) seeds have been purified to homogeneity by size-exclusion chromatography and ion-exchange chromatography. HGGI-I, HGGI-II and HGGI-III differ from each other and from the dormant seed inhibitors in amino acid composition, molecular size and charge. The amino-terminal sequence analyses indicate that these inhibitors are derived from the isoinhibitors of the dormant seed by a limited proteolysis and not by de novo synthesis. These inhibitors differ from each other at their amino-terminus. HGGI-II identical to HGGI-I except for the loss of a single amino-terminal aspartyl residue, where as HGGI-III shows the loss of a pentapeptide. All the three inhibitors are potent competitive inhibitors of trypsin and chymotrypsin. The dissociation constants (K(i)s) for trypsin inhibition indicate that amino-terminal tail of the inhibitors play a role in trypsin binding probably through electrostatic interaction.  相似文献   

9.
Beta-secretase inhibitors that lower brain beta-amyloid peptides (Abeta) are likely to be effective for treating Alzheimer's disease (AD). Irreversible epoxysuccinyl cysteine protease inhibitors are known to reduce brain Abeta and beta-secretase activity in the guinea pig model of human Abeta production. In this study, acetyl-L-leucyl-L-valyl-L-lysinal (Ac-LVK-CHO) is also shown to significantly reduce brain Abeta and beta-secretase activity and brain Abeta in the same model. Ac-LVK-CHO is structurally distinct from the epoxysuccinyl inhibitors and is a reversible cysteine protease inhibitor. The results suggest that cysteine protease inhibitors generally, and reversible cysteine protease inhibitors specifically, have potential for development as AD therapeutics.  相似文献   

10.
Abstract: The potencies of three peptide aldehyde inhibitors of calpain (calpain inhibitors 1 and 2 and calpeptin) as inhibitors of four catalytic activities of the multicatalytic proteinase complex (MPC) were compared with their potencies as inhibitors of m-calpain. The chymotrypsinlike activity (cleavage after hydrophobic amino acids) and the caseinolytic activity (degradation of β-casein) of MPC were strongly inhibited by calpain inhibitors 1 and 2 (IC50 values in the low micromolar range). Cleavage by MPC after acidic amino acids (peptidylglutamyl-peptide bond hydrolyzing activity) and basic amino acids (trypsinlike activity) was inhibited less effectively, declining moderately with increasing concentrations of calpain inhibitors 1 and 2. Calpeptin only weakly inhibited the four MPC activities, yet was the most potent inhibitor of m-calpain. These results indicate that caution must be exercised when calpain inhibitors 1 and 2 are used to infer calpain function. Calpeptin may be a better choice for such studies, although its effect on other cysteine or serine proteinases remains to be determined.  相似文献   

11.
Several simple scoring methods were examined for 2 series of beta-secretase (BACE-1) inhibitors to identify a docking/scoring protocol which could be used to design BACE-1 inhibitors in a drug discovery program. Both the PLP1 score and MMFFs interaction energy (E(inter)) performed as well or better than more computationally intensive methods for a set of substrate-based inhibitors, while the latter performed well for both sets of inhibitors.  相似文献   

12.
Potent mechanism-based inhibitors for matrix metalloproteinases   总被引:4,自引:0,他引:4  
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play important roles in physiological and pathological conditions. Both gelatinases (MMP-2 and -9) and membrane-type 1 MMP (MMP-14) are important targets for inhibition, since their roles in various diseases, including cancer, have been well established. We describe herein a set of mechanism-based inhibitors that show high selectivity to gelatinases and MMP-14 (inhibitor 3) and to only MMP-2 (inhibitors 5 and 7). These molecules bind to the active sites of these enzymes, initiating a slow binding profile for the onset of inhibition, which leads to covalent enzyme modification. The full kinetic analysis for the inhibitors is reported. These are nanomolar inhibitors (Ki) for the formation of the noncovalent enzyme-inhibitor complexes. The onset of slow binding inhibition is rapid (k(on) of 10(2) to 10(4) M(-1) s(-1) and the reversal of the process is slow (k(off) of 10(-3) to 10(-4) s(-1)). However, with the onset of covalent chemistry with the best of these inhibitors (e.g. inhibitor 3), very little recovery of activity (<10%) was seen over 48 h of dialysis. We previously reported that broad spectrum MMP inhibitors like GM6001 enhance MT1-MMP-dependent activation of pro-MMP-2 in the presence of tissue inhibitor of metalloproteinases-2. Herein, we show that inhibitor 3, in contrast to GM6001, had no effect on pro-MMP-2 activation by MT1-MMP. Furthermore, inhibitor 3 reduced tumor cell migration and invasion in vitro. These results show that these new inhibitors are promising candidates for selective inhibition of MMPs in animal models of relevant human diseases.  相似文献   

13.
It was hypothesized that histone deacetylase (HDAC) inhibitors may increase survival after total-body irradiation (TBI) based on previous reports demonstrating that HDAC inhibitors stimulate the proliferation of bone marrow stem cells. Using the time for mice to lose 20% or more of their weight as the end point, two HDAC inhibitors, valproic acid and trichostatin-A, were found to reduce lethality in a dose-dependent manner. HDAC inhibitors were effective at reducing lethality when given either 24 h before or 1 h after TBI. The results indicate that HDAC inhibitors have potential for protecting against and mitigating radiation-induced lethality.  相似文献   

14.
Interaction kinetic and thermodynamic analyses provide information beyond that obtained in general inhibition studies, and may contribute to the design of improved inhibitors and increased understanding of molecular interactions. Thus, a biosensor-based method was used to characterize the interactions between HIV-1 protease and seven inhibitors, revealing distinguishing kinetic and thermodynamic characteristics for the inhibitors. Lopinavir had fast association and the highest affinity of the tested compounds, and the interaction kinetics were less temperature-dependent as compared with the other inhibitors. Amprenavir, indinavir and ritonavir showed non-linear temperature dependencies of the kinetics. The free energy, enthalpy and entropy (DeltaG, DeltaH, DeltaS) were determined, and the energetics of complex association (DeltaG(on), DeltaH(on), DeltaS(on)) and dissociation (DeltaG(off), DeltaH(off), DeltaS(off)) were resolved. In general, the energetics for the studied inhibitors was in the same range, with the negative free energy change (DeltaG < 0) due primarily to increased entropy (DeltaS > 0). Thus, the driving force of the interaction was increased degrees of freedom in the system (entropy) rather than the formation of bonds between the enzyme and inhibitor (enthalpy). Although the DeltaG(on) and DeltaG(off) were in the same range for all inhibitors, the enthalpy and entropy terms contributed differently to association and dissociation, distinguishing these phases energetically. Dissociation was accompanied by positive enthalpy (DeltaH(off) > 0) and negative entropy (DeltaS(off) < 0) changes, whereas association for all inhibitors except lopinavir had positive entropy changes (DeltaS(on) > 0), demonstrating unique energetic characteristics for lopinavir. This study indicates that this type of data will be useful for the characterization of target-ligand interactions and the development of new inhibitors of HIV-1 protease.  相似文献   

15.
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.  相似文献   

16.
Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.  相似文献   

17.
Inhibition of bovine lung and testicular angiotensin-converting enzyme (ACE) by some well-known ACE inhibitors (lisinopril, captopril, enalapril), new substances (Nalpha-carboxyalkyl dipeptides PP-09, PP-35, and PP-36), and phosphoramidon was investigated using Cbz-Phe-His-Leu and FA-Phe-Phe-Arg (C-terminal analogs of angiotensin I and bradykinin, respectively) as the substrates. The somatic (two domains) and testicular (single domain) isoenzymes demonstrated different kinetic parameters for hydrolysis of these substrates. All of the inhibitors were competitive inhibitors of both ACE isoforms, and the Ki values were substrate-independent. The relative potencies of the inhibitors for both enzymes were: lisinopril > captopril > PP-09 > enalapril > PP-36 > PP-35 > phosphoramidon. The inhibition efficiency of PP-09 was comparable with those of the well-known ACE inhibitors. Captopril was more effectively bound to the somatic ACE (Ki = 0.5 nM) than to the testicular isoform (Ki = 6.5 nM).  相似文献   

18.
In order to obtain information regarding the design of selective DPP4 inhibitors, a 3D-QSAR study was conducted using DPP4, DPP8, and DPP9 inhibitors including newly synthesized six- and seven-membered cyclic hydrazine derivatives (KR64300, KR64301), which were evaluated in vitro for their inhibition of DPP4, DPP8, and DPP9. In this study, a highly predictive CoMFA model based on the fast-docking for DPP4, DPP8, and DPP9 inhibitors was obtained. This reliable model showed leave-one-out cross-validation q(2) and conventional r(2) values of 0.68 and 0.96 for the DPP4 inhibitors, 0.58 and 0.98 for the DPP8 inhibitors, and 0.68 and 0.97 for the DPP9 inhibitors, respectively. The validation of the CoMFA model was confirmed by the compounds in the test set, including the synthesized six- and seven-membered cyclic hydrazines. According to this study, to obtain selective DPP4 inhibitors compared to their isozymes, the interaction of the inhibitors with the S3 site and S1' site in DPP4 must be considered. The proposed newly synthesized compounds, KR64300 and KR64301, interact well with the sites mentioned above, showing excellent selectivity.  相似文献   

19.
Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs.  相似文献   

20.
Two trypsin inhibitors from acid-treated buffalo seminal plasma were purified by gel filtration and affinity chromatography. These acid-stable trypsin inhibitors having charge heterogeneity were homogeneous with respect to size as revealed by gel filtration and SDS-PAGE. Gel filtration data suggest molecular weight value of 9,900 Da for inhibitor I and 10,900 Da for inhibitor II. Molecular weight estimated by SDS-PAGE was found to be 10,600 Da and 11,200 Da for inhibitors I and II, respectively. The hydrodynamic properties such as Stokes radii (1.58 nm and 1.62 nm); intrinsic viscosity (2.5725 ml/g and 2.5025 ml/g) and diffusion coefficient (13.499 x 10(-11) m2/sec. and 13.166X10(-11) m2/sec) respectively for inhibitor I and II were determined by analytical gel filtration. These inhibitors were fairly thermostable and could not be stained by PAS reagent. Both the inhibitors were found to inhibit buffalo acrosin but not bovine chymotrypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号