首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   

2.

Introduction

B cells may play an important role in promoting immune activation in the rheumatoid synovium and can produce prostaglandin E2 (PGE2) when activated. In its turn, PGE2 formed by cyclooxygenase (COX) and microsomal prostaglandin E2 synthase 1 (MPGES1) contributes to the rheumatoid arthritis (RA) pathological process. Therapeutic depletion of B cells results in important improvement in controlling disease activity in rheumatoid patients. Therefore we investigated the expression of PGE2 pathway enzymes in RA B cells and evaluated the effects of B cell depleting therapy on their expression in RA tissue.

Methods

B cells expressing MPGES1 and COX-2 were identified by flow cytometry in in vitro stimulated and control mononuclear cells isolated from synovial fluid and peripheral blood of RA patients. Synovial biopsies were obtained from 24 RA patients before and at two consecutive time points after rituximab therapy. Expression of MPGES1, COX-1 and COX-2, as well as interleukin (IL)-1β and IL-6, known inducers of MPGES1, was quantified in immunostained biopsy sections using computerized image analysis.

Results

Expression of MPGES1 or COX-2 was significantly upregulated upon stimulation of B cells from blood and synovial fluid while control cells displayed no detectable enzymes. In synovial biopsy sections, the expression of MPGES1, COX-1 or COX-2 was resistant to rituximab therapy at 8 or 16 weeks after start of treatment. Furthermore expression of IL-1β in the synovial tissue remained unchanged, while IL-6 tended to decrease after therapy.

Conclusions

Therapy with B cell depleting agents, although efficient in achieving good clinical and radiographic response in RA patients, leaves important inflammatory pathways in the rheumatoid synovium essentially unaffected.  相似文献   

3.
We examined whether nitric oxide (NO) inhibits prostanoid synthesis through actions on cyclooxygenase (COX) gene expression and activity. Bovine pulmonary artery endothelial cells were pretreated for 30 min with the NO donors 1 mM S-nitroso-N-acetylpenicillamine (SNAP), 0.5 mM sodium nitroprusside (SNP), or 0.2 microM spermine NONOate; controls included cells pretreated with either 1 mM N-acetyl-D-penicillamine or the NO synthase (NOS) inhibitor 1 mM N(G)-nitro-L-arginine methyl ester with and without addition of lipopolysaccharide (LPS; 0.1 microg/ml) for 8 h. COX-1 and COX-2 gene and protein expression were examined by RT-PCR and Western analysis, respectively; prostanoid measurements were made by gas chromatography-mass spectrometry, and COX activity was studied after a 30-min incubation with 30 microM arachidonic acid. LPS induced COX-2 gene and protein expression and caused an increase in COX activity and an eightfold increase in 6-keto-PGF(1alpha) release. LPS-stimulated COX-2 gene expression was decreased by approximately 50% by the NO donors. In contrast, LPS caused a significant reduction in COX-1 gene expression and treatment with NO donors had little effect. SNAP, SNP, and NONOate significantly suppressed LPS-stimulated COX activity and 6-keto-PGF(1alpha) release. Our data indicate that increased generation of NO attenuates LPS-stimulated COX-2 gene expression and activity, whereas inhibition of endogenous NOS has little effect.  相似文献   

4.
Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteolytic enzymes, which degrade several components of extracellular matrix, in arthritic synovial cells. In cultured synovial fibroblasts, both nitric oxide (NO) and reactive oxygen species (ROS) are potent inducers of MMPs production. PEP1261, a tetrapeptide derivative used in this study, corresponds to residues of 39-42 human lactoferrin. The parent protein lactoferrin is able to inhibit the production of free radicals in rheumatoid joints and it regulates many aspects of inflammation. This study is aimed to examine the effects of PEP1261 on MMP-2 production in the presence of nitric oxide donor in cultured synovial fibroblasts from collagen-induced arthritic rats. PEP1261 affects a significant reduction in nitrite levels as well as in MMP-2 production in SNAP stimulated synovial fibroblasts and this is validated by gelatin zymography and immunoblot analysis. Furthermore, RTPCR analysis has demonstrated that PEP1261 inhibits MMP-2 mRNA expression in SNAP treated synovial fibroblasts. The results of this study suggest that PEP1261 possesses antiarthritic activity by inhibiting nitrite levels as well as MMP-2 expression better than control peptides viz., KRDS and RGDS.  相似文献   

5.
The purpose of this study was to analyze the expression of the two proinflammatory cytokines IL-20 and IL-24 and their shared receptors in rheumatoid arthritis and spondyloarthropathy. IL-20 was increased in plasma of rheumatoid arthritis patients compared with osteoarthritis patients and IL-24 was increased in synovial fluid and plasma of rheumatoid arthritis and spondyloarthropathy patients compared with osteoarthritis patients. IL-20 and IL-24 mRNA was only present at low levels in the synovium. In the synovial membrane, IL-20 protein was present in mononuclear cells and neutrophil granulocytes whereas IL-24 protein was observed in endothelial cells and mononuclear cells. IL-20 receptor type 1 and IL-22 receptor were expressed by granulocytes in the synovial fluid. In synovial fluid mononuclear cell cultures, stimulation with recombinant human IL-20 or recombinant human IL-24 induced monocyte chemoattractant protein 1 (CCL2/MCP-1) secretion, but not tumour necrosis factor alpha mRNA synthesis or IL-6 secretion. Both IL-20 and IL-24 showed correlations to CCL2/MCP-1 in plasma from rheumatoid arthritis and spondyloarthropathy patients. This study associates IL-20 and IL-24 to the synovium of rheumatoid arthritis and spondyloarthropathy and results indicate that the two cytokines contribute to disease pathogenesis through recruitment of neutrophil granulocytes and induction of CCL2/MCP-1.  相似文献   

6.
We investigated the interactions between inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) pathways in head and neck squamous cell carcinomas (HNSCCs) and in two carcinoma cell lines. HNSCCs showed an up-regulation of both pathways which were strongly correlated with each other (p=0.02) and with tumor vascularization (p=0.0001 and p=0.008, respectively). In carcinoma cells, Escherichia coli lipopolysaccharide (LPS) and EGF treatment up-regulated both pathways. NOS inhibitor N(G)-monomethyl-L-arginine methyl ester (L-NAME) inhibited this up-regulation. LPS or EGF induced iNOS expression that was not altered by NOS or COX-2 inhibitors. Conversely, LPS or EGF promoted COX-2 expression that was decreased by L-NAME. The NO donor S-nitroso-acetyl-penicillamine (SNAP) up-regulated COX-2 pathway and this effect was reduced by the guanylate cyclase inhibitor methylene blue. Thus, in squamous carcinoma cells, NO increases the activity of COX-2 pathway and this effect is probably mediated by endocellular cGMP level, with potential implications on tumor growth, angiogenesis, and therapy.  相似文献   

7.
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 10(11) particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.  相似文献   

8.
Rheumatoid arthritis (RA) is characterized by the accumulation of CD4(+) memory T cells in the inflamed synovium. To address the mechanism, we analyzed chemokine receptor expression and found that the frequency of CXC chemokine receptor (CXCR)4 expressing synovial tissue CD4(+) memory T cells was significantly elevated. CXCR4 expression could be enhanced by IL-15, whereas stromal cell-derived factor (SDF)-1, the ligand of CXCR4, was expressed in the RA synovium and could be increased by CD40 stimulation. SDF-1 stimulated migration of rheumatoid synovial T cells and also inhibited activation-induced apoptosis of T cells. These results indicate that SDF-1-CXCR4 interactions play important roles in CD4(+) memory T cell accumulation in the RA synovium, and emphasize the role of stromal cells in regulating rheumatoid inflammation.  相似文献   

9.
While inflammatory cytokines are well-recognized critical factors for the induction of cyclooxygenase-2 (COX-2) in activated fibroblast-like synovial cells, the roles of biologically active components other than inflammatory cytokines in synovial fluid remain unknown. Herein, we assessed the role of lysophosphatidic acid (LPA), a pleiotropic lipid mediator, in COX-2 induction using synovial fluid of patients with rheumatoid arthritis (RA) in fibroblast-like RA synovial cells. Synovial fluid from RA patients stimulated COX-2 induction, which was associated with prostaglandin E(2) production, in RA synovial cells. The synovial fluid-induced actions were inhibited by G(i/o) protein inhibitor pertussis toxin and LPA receptor antagonist 3-(4-[4-([1-(2-chlorophenyl)ethoxy]carbonyl amino)-3-methyl-5-isoxazolyl] benzylsulfanyl) propanoic acid (Ki16425). In fact, LPA alone significantly induced COX-2 expression and enhanced IL-1alpha- or IL-1beta-induced enzyme expression in a manner sensitive to pertussis toxin and Ki16425. RA synovial cells abundantly expressed LPA(1) receptor compared with other LPA receptor subtypes. Moreover, synovial fluid contains a significant amount of LPA, an LPA-synthesizing enzyme autotaxin, and its substrate lysophosphatidylcholine. In conclusion, LPA existing in synovial fluid plays a critical role in COX-2 induction in collaboration with inflammatory cytokines in RA synovial cells. Ki16425-sensitive LPA receptors may be therapeutic targets for RA.  相似文献   

10.
Human type IIA secretory phospholipase A2 (sPLA2-IIA) is induced in association with several immune-mediated inflammatory conditions. We have evaluated the effect of sPLA2-IIA on PG production in primary synovial fibroblasts from patients with rheumatoid arthritis (RA). At concentrations found in the synovial fluid of RA patients, exogenously added sPLA2-IIA dose-dependently amplified TNF-alpha-stimulated PGE2 production by cultured synovial fibroblasts. Enhancement of TNF-alpha-stimulated PGE2 production in synovial cells was accompanied by increased expression of cyclooxygenase (COX)-2 and cytosolic phospholipase A2 (cPLA2)-alpha. Blockade of COX-2 enzyme activity with the selective inhibitor NS-398 prevented both TNF-alpha-stimulated and sPLA2-IIA-amplified PGE2 production without affecting COX-2 protein induction. However, both sPLA2-IIA-amplified PGE2 production and enhanced COX-2 expression were blocked by the sPLA2 inhibitor LY311727. Colocalization studies using triple-labeling immunofluorescence microscopy showed that sPLA2-IIA and cPLA2-alpha are coexpressed with COX-2 in discrete populations of CD14-positive synovial macrophages and synovial tissue fibroblasts from RA patients. Based on these findings, we propose a model whereby the enhanced expression of sPLA2-IIA by RA synovial cells up-regulates TNF-alpha-mediated PG production via superinduction of COX-2. Therefore, sPLA2-IIA may be a critical modulator of cytokine-mediated synovial inflammation in RA.  相似文献   

11.
Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can potentially induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity during DNA replication. Key members of the MMR system include MutSalpha (hMSH2 and hMSH6) and MutSbeta (hMSH2 and hMSH3). To provide evidence of DNA damage in inflamed synovium, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells of RA patients using specific primer sequences for five key microsatellites. Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis tissue. Western blot analysis for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the NO donor S-nitroso-N-acetylpenicillamine. Western blot analysis demonstrated constitutive expression of hMSH2, 3, and 6 in RA and osteoarthritis FLS. When FLS were cultured with S-nitroso-N-acetylpenicillamine, the pattern of MMR expression in RA synovium was reproduced (high hMSH3, low hMSH6). Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.  相似文献   

12.
Nitric oxide (NO) and prostacyclin (PGI(2)) can be released by vascular agents to synergize their effects on vascular relaxation. In the present study we assess whether NO could affect PGI(2) production. We evaluated the effect of NO on PGI(2)-mediated arachidonic acid (AA)-induced relaxation in the perfused heart. We used cultured endothelial cells to characterize the mechanism involved in the NO effect on PGI(2) synthesis. AA-induced PGI(2) synthesis was enhanced when NO synthesis was inhibited. NO inhibited AA-induced relaxation and PGI(2) release in the coronary circulation. S-Nitroso-acetyl-DL-penicillamine (SNAP) decreased PGI(2) production in cultured endothelial cells. The SNAP effect was blunted by the inhibitor of soluble guanylate cyclase (LY-83,583) and the blocker of cGMP-dependent protein kinases (H-9). Specific cyclooxygenase-1 (COX-1) immunoprecipitation was associated to co-precipitation of four proteins. COX-1 showed neither serine nor threonine phosphorylation. One of the proteins that co-precipitated with COX-1 presented increased serine phosphorylation in the presence of SNAP. This effect was inhibited by the H-9. We suggest that NO, through cGMP-dependent protein kinases, produces the phosphorylation of a 104-kDa protein that is associated with inhibition in the activity of the COX-1, decreasing PGI(2) synthesis and thereby decreasing coronary PGI(2)-mediated vasodilatation.  相似文献   

13.
14.
15.
Transforming growth factor beta (TGF-beta) is a multifunctional homodimeric polypeptide with potent actions upon many target cells, including those of mesenchymal and haemopoietic lineage. The recent reports of high levels of the cytokine in rheumatoid synovium and synovial fluid, prompted this study into the effect of intra-articular injection of TGF beta-2 into rabbit knee-joints. Four daily injections of 1 microgram caused swelling, probably as a consequence of prostaglandin E2 production, synovial fibroblastic hyperplasia and a striking loss of femoral condyle proteoglycan. Using the polymerase chain reaction, no evidence could be obtained for the induction of interleukin-1 alpha gene expression in either synovial tissue or synovial fluid cells. These findings suggest that the TGF-beta present in the rheumatoid joint may contribute directly to the pathogenesis of rheumatoid arthritis.  相似文献   

16.
Degradation of fibrillar collagens is a central process in joint destruction in rheumatoid arthritis. Collagenase responsible for the collagenolysis has been immunolocalized on the extracellular matrix components at the cartilage/pannus junction in the rheumatoid joint, but very little is known about cellular source of the proteinase. In this paper monospecific antibodies against collagenase and tissue inhibitor of metalloproteinases (TIMP) were applied to rheumatoid and normal synovium to identify cells synthesizing and secreting the enzyme and its inhibitor. By treating the specimens with the monovalent ionophore, monensin, both collagenase and TIMP could be immunolocalized in hyperplastic synovial lining cells in rheumatoid synovium, but not in the cells of normal synovium. Dual immunolocalization studies demonstrated that the majority of the lining cells (approximately 64%) produce both collagenase and TIMP, while approximately 3% of the cells were positive only for collagenase, and 11% only for TIMP. Neither collagenase nor TIMP was immunolocalized on the extracellular matrix components in the synovia examined. These data suggest that synovial lining cells in rheumatoid arthritis secrete both collagenase and TIMP into the joint cavity. The role of collagenase in joint destruction in rheumatoid arthritis is discussed with reference to the regulation of the activity by TIMP.  相似文献   

17.
An increase in the vasculature is one of most representative changes in the synovial tissue of joints in rheumatoid arthritis (RA) and is closely associated with disease progression. Although the vasculatures are believed to be a result of VE-cadherin-dependent angiogenesis and a possible therapeutic target of the disease, synovial fibroblastic cells express VE-cadherin and form tube-like structures, suggesting that vasculatures in RA synovium may not simply result from angiogenesis. This paper analyzes a mechanism of VE-cadherin expression by rheumatoid arthritic synovial fibroblast-like cells (RSFLs) and their involvement in the tube-like formation. A representative angiogenic factor, vascular endothelial growth factor (VEGF), and its binding to a predominant receptor (VEGFR2) activated VE-cadherin expression and the signaling pathways of ERK/MAPK and PI3K/AKT/mTOR. Treatment of RSFLs with signaling pathway inhibitors, VEGFR2 siRNA and a VEGF-antagonizing mimicking peptide inhibited VE-cadherin expression dose-dependently. VEGF-stimulated tube-like formation by RSFLs on Matrigel was hindered by the mimicking peptide and inhibitor treatment. This data demonstrates that RSFLs activated by VEGF binding of VEGFR2 express VE-cadherin and formed tube-like structure under the control of ERK/MAPK and PI3K/AKT/mTOR pathways suggesting that the inhibition suppresses vascular development in RA synovium.  相似文献   

18.
Production of prostaglandin E (PGE) by rheumatoid synovium appears important to regulation of the pathologic process in rheumatoid arthritis. Cells derived from human synovium by proteolytic digestion produce large amounts of PGE which in turn can elevate synovial cell cAMP levels and inhibit cell proliferation. Data presented here indicate that cAMP can further increase production of PGE from adherent synovial cells (ASC). PGE production occurs over 12-72 hr and is not due to the ability of cAMP to inhibit cell proliferation. Exposure of cells to cAMP results in increased release of 3H arachidonic acid from precursors but not in activation of the cyclooxygenase enzyme. This phenomenon suggests the presence in adherent synovial cells of a mechanism for amplifying PGE production.  相似文献   

19.
20.
We studied the localization of T-cells and HLA-DR antigen-bearing (DR+) cells in rheumatoid synovitis by employing an improved two-color immunofluorescent staining (TCIF) technique. With this technique we have successfully identified DR+ activated T-cells in the inflammatory synovium. T-cells expressed HLA-DR antigen when they were in contact with DR+ antigen-presenting cells (APC). In addition, activated T-cells showed characteristic distribution within the synovium: they were found around high endothelial venules, within lymphoid follicles, and in hyperplastic synovial lining, suggesting their involvement in the development of rheumatoid synovial lesions via interaction with synovial DR+ APC lineage cells. These findings may contribute to better understanding of the role of activated T-cells in the histogenesis of rheumatoid synovitis, a typical chronic inflammatory lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号