首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.  相似文献   

5.
6.
The fadD1 and macs1 genes of Streptomyces coelicolor are part of a two-gene operon. Both genes encode putative acyl coenzyme A synthetases (ACSs). The amino acid sequence of FadD1 has high homology with those of several ACSs, while MACS1 has the closest homology with medium-chain ACSs, broadly known as SA proteins. Like FadD of Escherichia coli, FadD1 also has a broad substrate specificity, although saturated long-chain fatty acids appears to be the preferred substrate. fadD1 is a growth-phase-regulated gene, and its mRNA is detected only during the stationary phase of growth. Interestingly, a mutation in fadD1 alters the levels of another ACS or ACSs, both at the stationary phase and at the exponential phase of growth, at least when glucose is used as a main carbon source. The mutant also shows a severe deficiency in antibiotic production, and at least for Act biosynthesis, this deficiency seems to be related to delayed expression of the Act biosynthetic genes. Antibiotic production is restored by the introduction of a wt fadD1 allele into the cell, demonstrating a strict link between ACS activity and the biosynthesis of secondary metabolites. The results of this study indicate that the ACSs may be useful targets for the design of rational approaches to improving antibiotic production.  相似文献   

7.
Streptomyces coelicolor is a model system for the study of Streptomyces, a genus of bacteria responsible for the production of many clinically important antibiotics. Here we report the genome sequence of ϕCAM, a new S. coelicolor generalized transducing bacteriophage, isolated from a soil sample originating from Lincolnshire, United Kingdom. Many open reading frames within ϕCAM shared high levels of similarity to a prophage from Salinispora tropica and a putative prophage in Streptomyces sp. strain C.  相似文献   

8.
9.
10.
Most enzymes involved in tryptophan catabolism via kynurenine formation are highly conserved in Prokaryotes and Eukaryotes. In humans, alterations of this pathway have been related to different pathologies mainly involving the central nervous system. In Bacteria, tryptophan and some of its derivates are important antibiotic precursors. Tryptophan degradation via kynurenine formation involves two different pathways: the eukaryotic kynurenine pathway, also recently found in some bacteria, and the tryptophan-to-anthranilate pathway, which is widespread in microorganisms. The latter produces anthranilate using three enzymes also involved in the kynurenine pathway: tryptophan 2,3-dioxygenase (TDO), kynureninase (KYN), and kynurenine formamidase (KFA). In Streptomyces coelicolor, where it had not been demonstrated which genes code for these enzymes, tryptophan seems to be important for the calcium- dependent antibiotic (CDA) production. In this study, we describe three adjacent genes of S. coelicolor (SCO3644, SCO3645, and SCO3646), demonstrating their involvement in the tryptophan-to-anthranilate pathway: SCO3644 codes for a KFA, SCO3645 for a KYN and SCO3646 for a TDO. Therefore, these genes can be considered as homologous respectively to kynB, kynU, and kynA of other microorganisms and belong to a constitutive catabolic pathway in S. coelicolor, which expression increases during the stationary phase of a culture grown in the presence of tryptophan. Moreover, the S. coelicolor ΔkynU strain, in which SCO3645 gene is deleted, produces higher amounts of CDA compared to the wild-type strain. Overall, these results describe a pathway, which is used by S. coelicolor to catabolize tryptophan and that could be inactivated to increase antibiotic production.  相似文献   

11.
12.

Background

During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.

Results

Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.

Conclusions

Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.  相似文献   

13.
14.
15.
Polyhydroxyalkanoate (PHA) is stored as an important carbon and energy source in bacterial cells. For biomedical applications, gram-positive bacteria can be better sources of PHAs, since they lack outer membrane lipopolysaccharide. Although gram-positive Streptomyces coelicolor A3(2) has been indicated as a high potential PHA producer, pha C gene that encodes the key enzyme PHA synthase in the metabolic pathway is not determined in its genome. BLAST search results of the GenBank database argued that SCO7613 could specify a putative polyhydroxyalkanoate synthase (PhaC) responsible for PHA biosynthesis. Deduced amino acid sequence of SCO7613 showed the presence of conserved lipase box like sequence, 555GASAG559, in which serine residue was present as the active nucleophile. Present study describes deletion of putative S. coelicolor pha C gene via PCR dependent method. We showed that SCO7613 is not an essential gene in S. coelicolor and its deletion affected PHA accumulation negatively although it is not ceased. Transcomplementation abolished the mutant phenotype, demonstrating that the decrease in PHA resulted from the deletion of SCO7613.  相似文献   

16.
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.  相似文献   

17.
18.
A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. λ-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integrase of phage C31 were employed for the integration of these clusters into the heterologous hosts. This method was used to express the gene clusters of the aminocoumarin antibiotics novobiocin and clorobiocin in the well-studied strains Streptomyces coelicolor and Streptomyces lividans, which, in contrast to the natural producers, can be easily genetically manipulated. S. coelicolor M512 derivatives produced the respective antibiotic in yields comparable to those of natural producer strains, whereas S. lividans TK24 derivatives were at least five times less productive. This method could also be used to carry out functional investigations. Shortening of the cosmids' inserts showed which genes are essential for antibiotic production.  相似文献   

19.
In order to study functional gene expression in Streptomyces coelicolor, a mini-transposon encoding the apramycin resistance gene aac(3)IV within its inverted repeat (IR) boundaries was constructed based on IS204, which was previously identified in the genome of Nocardia asteroides YP21. The mini-transposon and IS204 transposase gene were then put on a kanamycin-resistant conjugative plasmid pDZY101 that can only replicate in Escherichia coli. After mating with S. coelicolor A3(2) M145, resistant colonies arose efficiently on both apramycin and kanamycin plates. Plasmid rescue indicated that entire plasmids were inserted into the M145 genome with cleavage at an inverted repeat junction formed by the right inverted repeat (IRR) and the last 18 bp of the transposase gene, while the left inverted repeat (IRL) was untouched. Southern blot analysis of the mutants using an aac(3)IV gene probe showed that transposition of plasmid pDZY101 was genetically stable, with a single-copy insertion within the S. coelicolor M145 genome. Several mutagenesis libraries of S. coelicolor M145 were constructed using plasmid pDZY101 derivatives and the transposon insertion site was determined. The correlation between novel mutant phenotypes and previously uncharacterized genes was established and these transposon locations were widely scattered around the genome.  相似文献   

20.
Streptomyces coelicolor genome carries two apparently paralogous genes, SCO4164 and SCO5854, that encode putative thiosulfate sulfurtransferases (rhodaneses). These genes (and their presumed translation products) are highly conserved and widely distributed across actinobacterial genomes. The SCO4164 knockout strain was unable to grow on minimal media with either sulfate or sulfite as the sole sulfur source. The SCO5854 mutant had no growth defects in the presence of various sulfur sources; however, it produced significantly less amounts of actinorhodin. Furthermore, we discuss possible links between basic interconversions of inorganic sulfur species and secondary metabolism in S. coelicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号