首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.  相似文献   

2.
The Nogo receptor (NgR) plays a central role in mediating growth-inhibitory activities of myelin-derived proteins, thereby severely limiting axonal regeneration after injury of the adult mammalian central nervous system (CNS). The inhibitory proteins Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) all bind to the extracellular leucine-rich repeat (LRR) domain of NgR, which provides a large molecular surface for protein-protein interactions. However, epitopes within the LRR domain of NgR for binding Nogo, MAG and OMgp have not yet been revealed. Here, we report an evolutionary approach based on the ribosome display technology for detecting regions involved in ligand binding. By applying this method of "affinity fingerprinting" to the NgR ligand binding domain we were able to detect a distinct region important for binding to Nogo. Several residues defining the structural epitope of NgR involved in interaction with Nogo were subsequently confirmed by alanine scanning mutagenesis.  相似文献   

3.
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.  相似文献   

4.
Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC), a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC) axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway.  相似文献   

5.
Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.  相似文献   

6.
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.  相似文献   

7.
8.
Identification of Nogo-66 receptor (NgR) and homologous genes in fish   总被引:2,自引:0,他引:2  
The Nogo-66 receptor NgR has been implicated in the mediation of inhibitory effects of central nervous system (CNS) myelin on axon growth in the adult mammalian CNS. NgR binds to several myelin-associated ligands (Nogo-66, myelin associated glycoprotein, and oligodendrocyte-myelin glycoprotein), which, among other inhibitory proteins, impair axonal regeneration in the CNS of adult mammals. In contrast to mammals, severed axons readily regenerate in the fish CNS. Nevertheless, fish axons are repelled by mammalian oligodendrocytes in vitro. Therefore, the identification of fish NgR homologs is a crucial step towards understanding NgR functions in vertebrate systems competent of CNS regeneration. Here, we report the discovery of four zebrafish (Danio rerio) and five fugu (Takifugu rubripes) NgR homologs. Synteny between fish and human, comparable intron-exon structures, and phylogenetic analyses provide convincing evidence that the true fish orthologs were identified. The topology of the phylogenetic trees shows that the extra fish genes were produced by duplication events that occurred in ray-finned fishes before the divergence of the zebrafish and pufferfish lineages. Expression of zebrafish NgR homologs was detected relatively early in development and prominently in the adult brain, suggesting functions in axon growth, guidance, or plasticity.  相似文献   

9.
Retinal ganglion cells (RGCs) die by apoptosis after optic nerve injury. A number of reports have separately shown changes in pro-apoptotic proteins such as the Bcl-2 family members following optic nerve injury. However, induction time of these apoptotic signals has not been identified due to different treatments of the optic nerve, and insufficient time intervals for measurements. Therefore, the stream of cell death signals is not well understood. In the present study, we systematically reinvestigated a detailed time course of these cell death/survival signals in the rat retina after optic nerve crush, to determine the signal cascade leading to RGC apoptosis. The most conspicuous changes detected in the retina were the rapid inactivation of phospho-Akt and phospho-Bad proteins 2-3 days after optic nerve damage, and the subsequent gradual activation of Bax protein and caspase-3 activity accompanied by cell loss of RGCs 6 days after nerve injury. Cellular localization of these molecular changes was limited to RGCs. Furthermore, amount of insulin-like growth factor-I (IGF-I), an activator of the phosphatidyl inositol-3-kinase (PI3K)/Akt system, was initially decreased from RGCs 1-2 days just prior to the inactivation of phospho-Akt by optic nerve crush. Conversely, supplementation with IGF-I into the rat retina induced upregulation of phospho-Akt expression and cell survival of RGCs both in vitro and in vivo. Thus, injury to the optic nerve might induce early changes in cellular homeostasis with a plausible loss of trophic support for injured RGCs. Actually, IGF-I drastically enhanced neurite outgrowth from adult rat RGCs via a wortmannin-dependent mechanism in a retinal explant culture. Our data strongly indicate that IGF-I is a key molecule that induces RGC apoptosis or RGC survival and regeneration in the retina during the early stage of optic nerve injury.  相似文献   

10.
Kim JE  Liu BP  Park JH  Strittmatter SM 《Neuron》2004,44(3):439-451
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  相似文献   

11.
Isolation of NILE Glycoprotein-Related cDNA Probes   总被引:2,自引:0,他引:2  
The nerve growth factor (NGF)-induced large external (NILE) glycoprotein is an NGF-inducible surface component of PC12 cells that is also widely distributed in the nervous system. It has recently been shown to be indistinguishable from the high-molecular-weight species of the brain antigens L1 and neuron-glia cell adhesion molecule (Ng-CAM) and may have a function in regulating cell adhesion in the developing nervous system. We have used polyclonal anti-NILE antisera to screen a lambda gt11 cDNA library made from NGF-treated PC12 cells. Four molecular probes have been isolated that encode parts of the apoprotein, related proteins, or both. These probes are 1,500, 800, 330, and 300 base pairs long, respectively, and in Northern blots they recognize a family of messages having lengths of approximately 5.9, 3.4, 2.4, and 1.9 kilobases. The two smaller messages are modestly but reproducibly up-regulated by NGF in PC12 cells, as is the NILE glycoprotein; however, only the two larger species would appear to be large enough to encode it. These messages are prominent in brain but not in nonneural tissues, in accordance with the observed levels of the protein. The recombinant phages produce fusion proteins that share specific epitopes with the NILE glycoprotein but not with other proteins. In these experiments, filters coated with recombinant fusion protein were prepared. Antibodies bound to and eluted from these filters specifically immunoprecipitate NILE glycoprotein, but not other proteins, from PC12 cell extracts. Other activities present in the original sera are not specifically retained by recombinant fusion proteins, and Escherichia coli lysates made with nonrecombinant lambda gt11 do not absorb the anti-NILE activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.  相似文献   

13.
14.
Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS.  相似文献   

15.
Many recombinant proteins are synthesized as fusion proteins containing affinity tags to aid in the downstream processing. After purification, the affinity tag is often removed by using a site-specific protease such as factor Xa (FXa). However, the use of FXa is limited by its expense and availability from plasma. To develop a recombinant source of FXa, we have expressed two novel forms of FXa using baby hamster kidney (BHK) cells as host and the expression vector pNUT. The chimeric protein FIIFX consisted of the prepropeptide and the Gla domain of prothrombin linked to the activation peptide and protease region of FXa, together with a cellulose-binding domain (CBD(Cex)) as an affinity tag. A second variant consisted of the transferrin signal peptide linked to the second epidermal growth factor-like domain and the catalytic domain of FX and a polyhistidine tag. Both FX variants were secreted into the medium, their affinity tags were functional, and following activation, both retained FXa-specific proteolytic activity. However, the yield of the FIIFX-CBD(Cex) fusion protein was 10-fold higher than that of FX-CBD(Cex) and other forms of recombinant FX reported to date. The FXa derivatives were used to cleave two different fusion proteins, including a biologically inactive alpha-factor-hirudin fusion protein secreted by Saccharomyces cerevisiae. After cleavage, the released hirudin demonstrated biological activity in a thrombin inhibition assay, suggesting that this method may be applicable to the production of toxic or unstable proteins. The availability of novel FX derivatives linked to different affinity tags allows the development of a versatile system for processing fusion proteins in vitro.  相似文献   

16.
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma.  相似文献   

17.
The cell adhesion molecule (CAM) DM-GRASP was investigated with respect to a role for axonal growth and navigation in the developing visual system. Expression analysis reveals that DM-GRASP's presence is highly spatiotemporally regulated in the chick embryo retina. It is restricted to the optic fiber layer (OFL) and shows an expression maximum in a phase when the highest number of retinal ganglion cell (RGC) axons extend. In the developing retina, axons grow between the DM-GRASP-displaying OFL and the Laminin-rich basal lamina. We show that DM-GRASP enhances RGC axon extension and growth cone size on Laminin substrate in vitro. Preference assays reveal that DM-GRASP-containing lanes guide RGC axons, partially depending on NgCAM in the axonal membrane. Inhibition of DM-GRASP in organ-cultured eyes perturbs orientation of RGC axons at the optic fissure. Instead of leaving the retina, RGC axons cross the optic fissure and grow onto the opposite side of the retina. RGC axon extension per se and navigation from the peripheral retina towards the optic fissure, however, is not affected. Our results demonstrate a role of DM-GRASP for axonal pathfinding in an early phase of the formation of the higher vertebrate central nervous system.  相似文献   

18.
19.
Neuronal Nogo66 receptor-1 (NgR1) binds the myelin inhibitors NogoA, OMgp, and myelin-associated glycoprotein (MAG) and has been proposed to function as the ligand-binding component of a receptor complex that also includes Lingo-1, p75(NTR), or TROY. In this study, we use Vibrio cholerae neuraminidase (VCN) and mouse genetics to probe the molecular composition of the MAG receptor complex in postnatal retinal ganglion cells (RGCs). We find that VCN treatment is not sufficient to release MAG inhibition of RGCs; however, it does attenuate MAG inhibition of cerebellar granule neurons. Furthermore, the loss of p75(NTR) is not sufficient to release MAG inhibition of RGCs, but p75(NTR-/-) dorsal root ganglion neurons show enhanced growth on MAG compared to wild-type controls. Interestingly, TROY is not a functional substitute for p75(NTR) in RGCs. Finally, NgR1(-/-) RGCs are strongly inhibited by MAG. In the presence of VCN, however, NgR1(-/-) RGCs exhibit enhanced neurite growth. Collectively, our experiments reveal distinct and cell type-specific mechanisms for MAG-elicited growth inhibition.  相似文献   

20.
Neuronal regeneration and axonal re‐growth in the injured mammalian central nervous system remains an unsolved field. To date, three myelin‐associated proteins [Nogo or reticulon 4 (RTN4), myelin‐associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG)] are known to inhibit axonal regeneration via activation of the neuronal glycosylphosphatidylinositol‐anchored Nogo receptor [NgR, together with p75 neurotrophin receptor (p75NTR) and Lingo‐1]. In the present study we describe the novel protein MANI (myelin‐associated neurite‐outgrowth inhibitor) that localizes to neural membranes. Functional characterization of MANI overexpressing neural stem cells (NSCs) revealed that the protein promotes differentiation into catecholaminergic neurons. Yeast two‐hybrid screening and co‐immunoprecipitation experiments confirmed the cell division cycle protein 27 (Cdc27) as an interacting partner of Mani. The analyses of Mani‐overexpressing PC12 cells demonstrated that Mani retards neuronal axonal growth as a positive effector of Cdc27 expression and activity. We show that knockdown of Cdc27, a component of the anaphase‐promoting complex (APC), leads to enhanced neurite outgrowth. Our finding describes the novel MANI‐Cdc27‐APC pathway as an important cascade that prevents neurons from extending axons, thus providing implications for the potential treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号