共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent theoretical and empirical work on foraging behaviour suggests that animals may respond to both the means and variances in benefits associated with available resources. We attempt to extend this analysis by asking if reward skew (third moment about the mean) might influence preference when two options have equal means and equal variances. We examine how minimizing the probability of starvation might induce response to skew. In the Appendix we develop an expected ‘fitness’ model which follows from economic theory and indicates more general conditions concerning responses to skew. We also report experiments involving foraging white-crowned sparrows (Zonotrichia leucophrys). Under conditions where positive skew should be favoured, the birds' behaviour supports the prediction. However, their response to skew is not as strong as responses to variance noted in the same individuals. 相似文献
2.
3.
Deyan Ge Zhixin Wen Lin Xia Zhaoqun Zhang Margarita Erbajeva Chengming Huang Qisen Yang 《PloS one》2013,8(4)
Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids. 相似文献
4.
Escalating global environmental change (GEC) over the past century has been driven largely by rapid industrialization, population growth, overconsumption of natural resources, and associated waste disposal challenges, as well as the inappropriate uses of technology. These changes are already having and will increasingly continue to have significant impacts on human health and well-being. How to tackle these issues is an important challenge to scientists, policy-makers, and the general public. Scientific consensus now exists that GEC and population health are linked, even though the details and mechanisms underlying this link remain to be both explicated and quantified. In this article we provide an overview of progress and challenges in the area of GEC and population health since the late 1980s, highlighting some of the main landmarks in this area and recommending directions for future research. 相似文献
5.
Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO2) and body temperature (Tb) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) ‘winter’ and long-day (LD) ‘summer’ photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO2 values than sub-Alpine mice. In addition, mice exposed to short days had higher VO2 values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased Tb in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing Tb during (‘winter’) conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher Tb during (‘summer’) conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during ‘summer’ conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO2 and Tb daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges. 相似文献
6.
SYNOPSIS. TWO studies from the Pleistocene coral reef fossilrecord demonstrate the sensitivity of reef communities to bothlocal environmental parameters and habitat reduction. In thefirst study, Pleistocene reef coral assemblages from Papua NewGuinea show pronounced constancy in taxonomic composition andspecies diversity between 125 and 30 ka (thousand years). Spatialdifferences in reef coral community composition during successivehigh stands of sea level were greater among sites of the sameage than among reefs of different ages, even though global changesin sea level, atmospheric CO2 concentration, tropical benthichabitat area, and temperature varied at each high sea levelstand. Thus, local environmental variation associated with runofffrom the land had greater influence on reef coral communitycomposition than variation in global climate and sea level.Proportional sampling from a regional species pool does notexplain the temporal persistence and local factors likely playeda major role. Examination of coral reef response to global changeshould not only involve regional diversity patterns but alsolocal ecological factors, and the interactive effects of localand global environmental change. In the second study, Pleistocene extinction of two widespread,strictly insular species of Caribbean reef corals, Pocilloporacf. palmata (Geister, 1975) and an organ-pipe growth form ofthe Montastraea "annularis" species complex, was natural anddid not involve gradual decrease in range and abundance, butwas sudden (thousands of years) throughout the entire range.One explanation is that sea level drop at the Last Glacial Maximum(LGM18 ka) resulted in a threshold of habitat reduction,and caused disruption of coral metapopulation structure. Thresholdeffects predicted by metapopulation dynamics may also explainthe apparent paradox of the large amount of degraded modernreef habitat without any known modern-day reef coral extinctions.The rapid extinction of widespread Pleistocene species emphasizesthe vulnerability of reef corals in the face of present rapidenvironmental and climatic change. 相似文献
7.
Daniel J. M. Baxter Jennifer M. Psyllakis Michael P. Gillingham & Erin L. O'Brien 《Ethology : formerly Zeitschrift fur Tierpsychologie》2006,112(10):977-983
The ability to detect and respond to predation risk while foraging may have important fitness consequences for prey organisms. Anti‐predator behaviours may reduce the probability of mortality because of predation, but they may also be associated with reduced foraging efficiency. Several behaviours of bats have been suggested to serve as anti‐predator responses, and there is evidence that predation, particularly by avian predators such as owls, may be an important cause of bat mortality. Previous studies have attempted to determine whether predator presence affects bat behaviour when emerging from roost sites, but few have examined effects of predator presence on bat behaviour while foraging. In this study, we investigated whether foraging bats respond to predator cues by presenting bats with an acoustic cue simulating the presence of an owl. Within matched trials, which were conducted at different locations each of 18 nights, significantly fewer bat detections were recorded at owl playback stations than at control stations (no auditory cue), suggesting an avoidance response by bats. An acoustic control (i.e. station playing woodpecker calls), however, did not have significantly more detections than the stations playing the owl calls, suggesting that bats may simply be avoiding noise and more detailed investigation is warranted. Although evidence for owl predation on bats is minimal in North America, results of this study may indicate that the perceived presence of owls may represent a factor influencing the behaviour of bats while foraging. 相似文献
8.
Miguel Santana de Almeida Neto Carolina Alves Collier de Almeida José Souto Rosa Filho Ana Carla Asfora El-Deir José da Silva Mourão 《Human ecology: an interdisciplinary journal》2018,46(4):561-571
Ecological models derived from Optimal Foraging Theory have been used to understand the decision-making processes and optimization of artisanal fisheries. However, many studies do not consider the influence of fishing techniques or seasonality on foraging strategies. We analyzed the optimization strategies and decision-making processes of the fishers at a Brazilian reservoir. Data were collected through interviews and questionnaires involving 65 artisanal fishers, and daily catches were monitored in July/2015 and January/2016. Fishing techniques and seasonality influenced the fishers’ behavior. The fishery activities monitored here were partially or totally consistent with the predictions of the Central-Place Foraging model, but due to the complexity of these activities, other factors also influenced the decision-making of individual fishers. Furthermore, the adoption of strategies that involve “non-ideal” behaviors may be advantageous for the fishers in the context of their individual necessities. 相似文献
9.
Originally, evolutionary game theory typically predicted that optimal behaviour in a given situation is uniform or bimodal. However, the growing evidence that animals behave more variably while individuals may differ consistently in their behaviour, has led to the development of models that predict a distribution of strategies. Here we support the importance of such models in a study on a coral reef fish host–parasite system. Parasitic blennies (Plagiotremus sp.) regularly attack other fishes to bite off scales and mucus. Individuals of some victim species react to being bitten with punishing the parasite through aggressive chasing. Our field observations and laboratory experiments show that individual blennies differ markedly in how they incorporate being punished into their foraging decisions. We discuss how these differences may affect the payoff structure and hence the net effect of punishment on punishers and on the appearance of a public good for look-alikes. 相似文献
10.
11.
12.
SYNOPSIS. Response of Chlamydomonas to temperature change was investigated. When the temperature of the medium was suddenly increased (decreased) the abrupt velocity rise (drop) was observed. This abrupt velocity change was induced immediately after the temperature change. Then, the high (low) level of the velocity was maintained for a few minutes. Finally the velocity decreased (increased), tending to a stationary level at the new temperature with the decay time of a few minutes. The rate of the temperature change determined the magnitude of response. The threshold value was found in the rate of the temperature change to produce the transient change of the velocity. It was ∼ 0.2 C/sec. 相似文献
13.
SYNOPSIS. Models of global climate change predict an increasein the mean surface temperature between 1.5° and 4.5°Cby the middle of the next century. Even a moderate increaseof 3°C is likely to result in a shift in the distributionof North American habitat types and vegetational associations,either in latitude or elevation or both. The challenge to ConservationBiology is to predict the responses of terrestrial organismsto the expected alteration in habitats and ecosystems. Recentbiophysical models have been expanded to demonstrate the intimateassociations between the thermal environment, organismal physiologyand ecology. Thus, the expected turnover in habitats may havea profound influence on the distribution of organisms. I describeone possible approach that couples temporal and spatial variationin an ecologically relevant physiological trait, locomotoryperformance, in a widespread species of lizard, Urosaurus ornatus,to predict the expected response of species to global change. Estimates of maximum velocity and endurance capacity were obtainedfrom 16 populations throughout the range of U. ornatus. Informationon spatial variation was supplemented with data on temporalvariation spanning an eight year period from a single referencepopulation. I used thesedata to address two questions: 1) isthere an association between locomotory performance and theexpected habitat changes predicted from global climate modelsand 2) is there sufficient variation within a population torespond to habitat modification. Populations of U. ornatus varied significantly in sprint speedand stamina. Several environmental factors expected to correlatewith global climatechange were evaluated using the patternsof variation in locomotor performance. Results from this studysuggest that high elevation populations found in ponderosa pineforests should be most susceptible to changes in climate. Within-populationvariation was found to span the range of variation seen amongpopulations and was sensitive to temporal variation in climaticconditions. Given the expected and rapid change in environments,small, ectothermic, terrestrial species may not have the abilityto modify their geographic distribution. However, the resultspresented here suggest that only certain populations are atrisk; yet the evolutionary response of the population may belong relative to the rate of environment change. 相似文献
14.
The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient 总被引:3,自引:0,他引:3
Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%–19% increases of soil respiration in response to warming and decreases of 3%–29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5–10 cm, a mean Q10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%– 22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables. 相似文献
15.
James C. Bull Eugene V. Ryabov Gill Prince Andrew Mead Cunjin Zhang Laura A. Baxter Judith K. Pell Juliet L. Osborne Dave Chandler 《PLoS pathogens》2012,8(12)
Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development. 相似文献
16.
A traditional view is that sexual reproduction increases the potential for phenotypic evolution by expanding the range of genetic variation upon which natural selection can act. However, when nonadditive genetic effects and genetic disequilibria underlie a genetic system, genetic slippage (a change in the mean genotypic value contrary to that promoted by selection) in response to sex may occur. Additionally, depending on whether natural selection is predominantly stabilizing or disruptive, recombination may either enhance or reduce the level of expressed genetic variance. Thus, the role of sexual reproduction in the dynamics of phenotypic evolution depends heavily upon the nature of natural selection and the genetic system of the study population. In the present study, on a permanent lake Daphnia pulicaria population, sexual reproduction resulted in significant genetic slippage and a significant increase in expressed genetic variance for several traits. These observations provide evidence for substantial genetic disequilibria and nonadditive genetic effects underlying the genetic system of the study population. From these results, the fitness function of the previous clonal selection phase is inferred to be directional and/or stabilizing. The data are also used to infer the effects of natural selection on the mean and the genetic variance of the population. 相似文献
17.
Evolution depends on the manner in which genetic variation is translated into new phenotypes. There has been much debate about whether organisms might have specific mechanisms for “evolvability,” which would generate heritable phenotypic variation with adaptive value and could act to enhance the rate of evolution. Capacitor systems, which allow the accumulation of cryptic genetic variation and release it under stressful conditions, might provide such a mechanism. In yeast, the prion [PSI+] exposes a large array of previously hidden genetic variation, and the phenotypes it thereby produces are advantageous roughly 25% of the time. The notion that [PSI+] is a mechanism for evolvability would be strengthened if the frequency of its appearance increased with stress. That is, a system that mediates even the haphazard appearance of new phenotypes, which have a reasonable chance of adaptive value would be beneficial if it were deployed at times when the organism is not well adapted to its environment. In an unbiased, high-throughput, genome-wide screen for factors that modify the frequency of [PSI+] induction, signal transducers and stress response genes were particularly prominent. Furthermore, prion induction increased by as much as 60-fold when cells were exposed to various stressful conditions, such as oxidative stress (H2O2) or high salt concentrations. The severity of stress and the frequency of [PSI+] induction were highly correlated. These findings support the hypothesis that [PSI+] is a mechanism to increase survival in fluctuating environments and might function as a capacitor to promote evolvability. 相似文献
18.
Most organisms need to acquire various resources to survive and reproduce. Individuals should adjust their behavior to make optimal use of the landscape and limit the costs of trade-offs emerging from the use of these resources. Here we study how African elephants Loxodonta africana travel to foraging places between regular visits to waterholes. Elephant herds were tracked using GPS collars during two consecutive dry seasons in Hwange National Park, Zimbabwe. We segmented each individual movement track at each visit to water to define foraging trips, and then used trip-level statistics to build an understanding of movement strategies. Travel speed within these individually-consistent movement bouts was also analyzed to understand if speed was better linked to distance to water or progression in the trip over time. We found that elephants went further from water when drinking less often, which could result from a trade-off between drinking and foraging in less depleted, far from water, places. Speed increased towards the beginning and the end of the trips, and was also greater than observed during the wet season, suggesting that elephants were trying to save time. Numerous short trips traveled at greater speed, particularly when commuting to a different waterhole, was tentatively explained by the inability to drink at specific waterholes due to intra-specific interference. Unexpectedly elephants did not always minimize travel time by drinking at the closest waterhole, but the extra distance traveled remained never more than a few kilometers. Our results show how individuals may adjust movement behavior to deal with resource trade-offs at the landscape scale. We also highlight how behavioral context, here progression in the trip, may be more important than spatial context, here distance to water, in explaining animal movement patterns. 相似文献
19.
Food collection is a critical component of an individual’s life, and for eusocial insects, the colony that individual foragers support and maintain. Changes to the distribution and composition of food types in the environment are expected influence diet selection if the economics of foraging are altered. For seed-harvesting ants, the abundance and composition of seed types available on the ground typically shows a high degree of spatial and temporal variability, and not all types of seed are equally valued by foragers. We evaluated the response of Owyhee harvester ants (Pogonomyrmex salinus) to reductions in the availability of Sandberg bluegrass (Poa secunda) seeds, a preferred food type, while leaving the availability of cheatgrass (Bromus tectorum) seeds, a less favored food type, unmanipulated. At control colonies (N?=?8), cheatgrass seeds comprised 3.9?±?1.6% of total seed intake, while Sandberg bluegrass seeds accounted for the remainder of the diet. At colonies where bluegrass was trimmed to prevent new seeds from dropping within 12 m of the nest (N?=?8), cheatgrass seed intake increased significantly to 8.2?±?1.4% of the diet. Despite the uptick in collection of cheatgrass seeds, bluegrass seed collection remained high and very similar between treatment and control colonies. Treatment colonies were significantly more likely than control colonies to have at least one trunk trail that extended beyond the 12 m foraging range of the colony, and ants returning along these trails carried bluegrass seeds but not cheatgrass seeds. These results suggest that when preferred seeds dropped in abundance near nests, the economics of foraging by harvester ants favored a small increase in acceptance of less preferred seeds as well as more distant forays to locate and collect preferred seeds. 相似文献
20.
Anderson JM Soon Chow W Park YI Franklin LA Robinson SP van Hasselt PR 《Photosynthesis research》2001,67(1-2):103-112
Most chloroplasts undergo changes in composition, function and structure in response to growth irradiance. However, Tradescantia albiflora, a facultative shade plant, is unable to modulate its light-harvesting components and has the same Chl a/Chl b ratios and number of functional PS II and PS I reaction centres on a Chl basis at all growth irradiances. With increasing growth irradiance, Tradescantia leaves have the same relative amount of chlorophyll—proteins of PS II and PS I, but increased xanthophyll cycle components and more zeaxanthin formation under high light. Despite high-light leaves having enhanced xanthophyll cycle content, all Tradescantia leaves acclimated to varying growth irradiances have similar non-photochemical quenching. These data strongly suggest that not all of the zeaxanthin formed under high light is necessarily non-covalently bound to major and minor light-harvesting proteins of both photosystems, but free zeaxanthin may be associated with LHC II and LHC I or located in the lipid bilayer. Under the unusual circumstances in light-acclimated Tradescantia where the numbers of functional PS II and PS I reaction centres and their antenna size are unaltered during growth under different irradiances, the extents of PS II photoinactivation by high irradiances are comparable. This is due to the extent of PS II photoinactivation being a light dosage effect that depends on the input (photon exposure, antenna size) and output (photosynthetic capacity, non-radiative dissipation) parameters, which in Tradescantia are not greatly varied by changes in growth irradiance.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献