首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggressive behavior in Drosophila melanogaster is composed of the sequential expression of stereotypical behavioral patterns (for analysis see 1). This complex behavior is influenced by genetic, hormonal and environmental factors. As in many organisms, previous fighting experience influences the fighting strategy of flies and the outcome of later contests: losing a fight increases the probability of losing later contests, revealing "loser" effects that likely involve learning and memory 2-4. The learning and memory that accompanies expression of complex social behaviors like aggression, is sensitive to pre-test handling of animals 5,6. Many experimental procedures are used in different laboratories to study aggression 7-9, however, no routinely used protocol that excludes handling of flies is currently available. Here, we report a new behavioral apparatus that eliminates handling of flies, using instead their innate negative geotactic responses to move animals into or out of fighting chambers. In this protocol, small circular fight arenas containing a food cup are divided into two equal halves by a removable plastic slider prior to introduction of flies. Flies enter chambers from their home isolation vials via sliding chamber doors and geotaxis. Upon removal of plastic sliders, flies are free to interact. After specified time periods, flies are separated again by sliders for subsequent experimentation. All of this is done easily without handling of individual flies. This apparatus offers a novel approach to study aggression and the associated learning and memory, including the formation of "loser" effects in fly fights. In addition, this new general-purpose behavioral apparatus can be employed to study other social behaviors of flies and should, in general, be of interest for investigating experience-related changes in fundamental behavioral processes.  相似文献   

2.
To understand the prevalence and conditional use of aggression among animals, one has to know its costs and benefits. The obvious cost of aggression in animals that possess teeth, claws or other specialized weaponry is injury. Many species, however, do not have such body parts and thus cannot readily injure others. The cost of aggression in these animals is not well studied. We tested whether aggression has a fitness cost in fruit flies, which can serve as a model species for animals without weapons that engage in aggression. In three experiments employing distinct protocols, we allowed focal flies to fight for control of an attractive food patch over 4 days and then compared their survivorship to that of flies not engaged in conflict. In all three experiments, fly survivorship was lower in the aggression than no-aggression treatments. Microscopic examination revealed no differences in wing damage between flies of the aggression and no-aggression treatments. The two most likely, non-mutually exclusive explanations for lower survivorship post-fighting are physiological changes due to stress, and metabolic alterations associated with a life-history strategy optimized for high-conflict settings.  相似文献   

3.
Previous studies have suggested that social interactions (e.g., the actions and reactions elicited by the interaction of co-specific individuals) induce individual fruit flies (Tephritidae) to ingest more food, especially protein-rich food. Changes in feeding behavior related to social interactions have been associated with reproduction (e.g., when different sexes are present), reproductive facilitation (e.g., when two females interact) and stress and aggression (e.g., flies of the same sex, or crowdedness). The present study investigated the effect of social interaction on the feeding, longevity and resource management of the Ethiopian fruit fly, Dacus ciliatus. Single flies and pairs of flies (of the same or different sexes) were confined to a small arena (the PUB system), in which we measured the amount of liquid food ingested daily by each fly. In addition, we sampled flies of different ages, extracted and quantified their lipid and protein contents, and related individual metabolic contents to the ingestion of a fructose and protein hydrolysate solution. Results showed that individual ingestion was significantly higher in flies maintained in pairs than in flies kept as solitary individuals. The highest intake rates were observed for the female–female pairs. In general, females ingested significantly greater volumes than males. Lipid contents tended to decrease progressively with age in flies kept as solitary individuals, especially in female flies, while lipid levels decreased and then increased in flies maintained in pairs. Protein trends were similar, although less pronounced than the patterns observed for the lipids. The flies kept as solitary individuals lived significantly longer than those kept in pairs. A resource-management analysis points to a decreased metabolic rate in flies kept as solitary individuals, as compared to paired flies. Results are discussed in view of theories of resource management and survival strategies.  相似文献   

4.
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly''s major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.  相似文献   

5.
Aggression, costly in both time and energy, is often expressed by male animals in defense of valuable resources such as food or potential mates. Here we present a new insect model system for the study of aggression, the male flesh fly Sarcophaga crassipalpis, and ask whether there is an ontogeny of aggression that coincides with reproductive maturity. After establishing that reproductive maturity occurs by day 3 of age (post-eclosion), we examined the behavior of socially isolated males from different age cohorts (days 1, 2, 3, 4, and 6) upon introduction, in a test arena, with another male of the same age. The results show a pronounced development of aggression with age. The change from relative indifference to heightened aggression involves a profound increase in the frequency of high-intensity aggressive behaviors between days 1 and 3. Also noteworthy is an abrupt increase in the number of statistically significant transitions involving these full-contact agonistic behaviors on day 2. This elevated activity is trimmed back somewhat by day 3 and appears to maintain a stable plateau thereafter. No convincing evidence was found for escalation of aggression nor the establishment of a dominance relationship over the duration of the encounters. Despite the fact that aggressive interactions are brief, lasting only a few seconds, a major reorganization in the relative proportions of four major non-aggressive behaviors (accounting for at least 96% of the total observation time for each age cohort) accompanies the switch from low to high aggression. A series of control experiments, with single flies in the test arenas, indicates that these changes occur in the absence of the performance of aggressive behaviors. This parallel ontogeny of aggressive and non-aggressive behaviors has implications for understanding how the entire behavioral repertoire may be organized and reorganized to accommodate the needs of the organism.  相似文献   

6.
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.  相似文献   

7.
Circadian rhythms can synchronize to environmental time cues, such as light, temperature, humidity, and food availability. Previous studies have suggested that these rhythms can also be entrained by social interactions. Here, we used Drosophila melanogaster as a model to study the influence of socio-sexual interactions on the circadian clock in behavior and pacemaker neurons. If two flies of opposite sex were paired and kept in a small space, the daily activity patterns of the two flies were clearly different from the sum of the activity of single male and female flies. Compared with single flies, paired flies were more active in the night and morning, were more active during females’ active phase, and were less active during males’ active phase. These behavioral phenotypes are related to courtship behavior, but not to the circadian clock. Nevertheless, in male-female pairs of flies with clocks at different speeds (wild-type and per S flies), clock protein cycling in the DN1 pacemaker neurons in the male brain were slightly influenced by their partners. These results suggest that sexual interactions between male-female couples can serve as a weak zeitgeber for the DN1 pacemaker neurons, but the effect is not sufficient to alter rhythms of behavioral activity.  相似文献   

8.
In social animals, intergroup interactions, whether through agonistic and competitive behaviors or affiliative ones, can influence important parameters such as home range, territory sizes, and access to resources, which may directly affect both female and male fitness. We studied the intergroup interaction patterns of a wild group of black-tufted-ear marmosets (Callithrix penicillata) in central Brazil. Agonistic interactions occurred at low frequencies during intergroup encounters. The marmosets directed agonistic interactions without physical aggression primarily against same-sex individuals, suggesting that male and female aggression patterns are shaped by their sexual interests. However, females of the focal group also directed agonistic behavior toward extragroup males that attempted copulation. The marmosets appeared to use intergroup encounters to gather information about possible partners and extragroup reproductive opportunities. Intergroup sexual interactions occurred mainly in the form of copulations or attempted copulations by all adults, with the exception of the dominant female. Our results suggest that a possible reproductive strategy used by males is to attempt fertilization of extragroup females. Adult males copulated with the same extragroup female during several opportunities, which suggests sperm competition or the establishment of social bonds with neighboring females.  相似文献   

9.
Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a ‘follow’ outcome compared with the case of an ‘avoid’ outcome.  相似文献   

10.
Discussions about social behavior are generally limited to fitness effects of interactions occurring between conspecifics. However, many fitness relevant interactions take place between individuals belonging to different species. Our detailed knowledge about the role of hormones in intraspecific interactions provides a starting point to investigate how far interspecific interactions are governed by the same physiological mechanisms. Here, we carried out standardized resident–intruder (sRI) tests in the laboratory to investigate the relationship between androgens and both intra- and interspecific aggression in a year-round territorial coral reef fish, the dusky gregory, Stegastes nigricans. This damselfish species fiercely defend cultivated algal crops, used as a food source, against a broad array of species, mainly food competitors, and thus represent an ideal model system for comparisons of intra-and interspecific territorial aggression. In a first experiment, resident S. nigricans showed elevated territorial aggression against intra- and interspecific intruders, yet neither elicited a significant increase in androgen levels. However, in a second experiment where we treated residents with flutamide, an androgen receptor blocker, males but not females showed decreased aggression, both towards intra- and interspecific intruders. Thus androgens appear to affect aggression in a broader territorial context where species identity of the intruder appears to play no role. This supports the idea that the same hormonal mechanism may be relevant in intra- and interspecific interactions. We further propose that in such a case, where physiological mechanisms of behavioral responses are found to be context dependent, interspecific territorial aggression should be considered a social behavior.  相似文献   

11.
Fighting commonly occurs among animals and is very important for resolving conflicts between conspecific individuals over limited resources. The plasticity of fighting strategies and neurobiological mechanisms underlying fighting behavior of insects are not fully understood. In the present study, we examined whether physical and social experiences affected the aggressiveness of males of the cricket Velarifictorus aspersus Walker, and whether an octopamine (OA) receptor agonist could affected the aggressiveness of males exposed to different experiences. We found that flight and winning a fight significantly enhanced male aggressiveness, while losing a fight significantly suppressed male aggressiveness, consistent with the findings of existing studies on other cricket species. We also found that female presence had a stronger enhancing effect on male aggressiveness than flight or winning a fight. These findings demonstrated that physical and social experiences can affect the fighting behavior of male V. aspersus. Topical application of a 0.15?M solution of an OA receptor agonist (chlordimeform, CDM) significantly increased male aggression level, suggesting that OA may play an important role as a neuromodulator in controlling fighting behavior of males of this species. Despite displaying a significantly higher aggression level (level 5 or 6), CDM-treated losers did not escalate to physical combat, while fights between courting males usually resulted in physical escalation. It is likely that fighting behavior is only partly regulated by OA, and additional regulatory pathways may be involved in achieving physical combat.  相似文献   

12.
Measurement of food intake in the fruit fly Drosophila melanogaster is often necessary for studies of behaviour, nutrition and drug administration. There is no reliable and agreed method for measuring food intake of flies in undisturbed, steady state, and normal culture conditions. We report such a method, based on measurement of feeding frequency by proboscis-extension, validated by short-term measurements of food dye intake. We used the method to demonstrate that (a) female flies feed more frequently than males, (b) flies feed more often when housed in larger groups and (c) fly feeding varies at different times of the day. We also show that alterations in food intake are not induced by dietary restriction or by a null mutation of the fly insulin receptor substrate chico. In contrast, mutation of takeout increases food intake by increasing feeding frequency while mutation of ovoD increases food intake by increasing the volume of food consumed per proboscis-extension. This approach provides a practical and reliable method for quantification of food intake in Drosophila under normal, undisturbed culture conditions.  相似文献   

13.

Social aggression is a pervasive feature of insect societies. In eusocial Hymenoptera, aggression among females can affect task performance and competition over direct reproduction (egg laying); in most species males participate in social interactions relatively rarely. Males of the independent-founding paper wasp Mischocyttarus mastigophorus are exceptional: they are aggressive toward female nestmates, leading us to explore the function of this unusual behavior. We applied social network analyses to data on M. mastigophorus social aggression to quantify sex differences in giving and receiving social aggression. The network analyses supported the pattern of biased male aggression toward female nestmates; females are relatively rarely aggressive to males. We then asked whether male aggression toward females was biased by females’ relative ovary development. Males were more aggressive toward females with better-developed ovaries, opposite to patterns of aggression among females. Because food brought to the colonies is often monopolized by dominant females, we suggest that males direct aggression toward socially dominant females with better-developed ovaries to obtain food. The implications of biased male aggression for female task performance and physiology are unknown.

  相似文献   

14.
Abstract. Aggressive behaviour occurring in intrasexual competition is an important trait for animal fitness. Although female intrasexual aggression is reported in several insect species, little is known about female competition and aggressive interactions in polygynous male lekking species. The interactions of female Mediterranean fruit flies, Ceratitis capitata (a male lekking species), with other females and mating pairs under laboratory conditions are investigated. Mature, unmated (virgin) females are aggressive against each other and against mating pairs, whereas immature females are not. Female aggression against other females decreases dramatically after mating; however, mated females maintain aggression against mating pairs. In addition, higher intrasexual aggression rates are observed for mature, virgin females than for virgin males of the same age. The results show that female aggressiveness is virginity related, suggesting female competition for mates. These findings have important implications for understanding the physiological aspects of a complex social behaviour such as aggression and should stimulate further research on female agonistic behaviour in male lekking mating systems.  相似文献   

15.
The effect of testosterone (testosterone propionate: TP) on intraspecific aggression in males and females of two strains of rats—WEzob and S3—was examined. Pairs of these rats, gonadectomized and treated either with oil or with testosterone propionate (TP), were tested in three different combinations: OIL against OIL, OIL against TP, and TP against TP-treated animals. Subsequently the effects of TP treatment of the subject and for the opponents interaction with sex and strain on the occurrence of diverse social + aggression behavioral parameters were determined. The results of the S3 strain indicate that testosterone treatment of either the subject or the opponent stimulates aggression in both males and females. No sex difference could be determined with respect to the incidence of aggression. In the WEzob strain a stimulatory effect of TP was shown in females but not in males. The absence of a clear stimulatory effect of TP in WEzob males in terms of changes in the total time spent on aggression, however, could wrongly suggest that TP does not affect aggression in these animals. The possibility of TP having an effect on these males in terms of increasing the intensity of fighting is discussed.  相似文献   

16.
Aggression is a social behaviour which can be affected by numerous factors. The quality and quantity of food resources may play an important role in the aggressiveness of territorial ungulates as the defence of these resources influences female choice and mating opportunities. However, the relationship between food resources and aggression remains poorly understood. We assessed the ecological and social factors that influence aggression in Lama guanicoe, a territorial ungulate exhibiting resource‐defence polygyny, during three periods (group‐formation, mating and post‐mating) in the reproductive seasons of 2014 and 2016. We recorded 460 focal observations of territorial (family groups, solitary) and non‐territorial (mixed and bachelor groups) males. We performed analyses at the population level (including all focal observations) and at the group level (each social unit separately), to test whether the factors that influence aggression differ at these different scales. We also identified proxies of vegetation quality as potential predictors of aggression. At the population level, we found that the presence of aggressive behaviour peaked during the mating season and that post‐mating aggression may have been driven by inter‐annual environmental variations. For family groups and solitary males, variables reflecting high vegetation quality/quantity were predictors of aggressive behaviour, reflecting the resource‐defence strategy of this species. Conversely, for mixed‐group males, aggression may be more associated with social instability and group size, although this hypothesis has yet to be tested. Our research reinforces the idea that aggression can occur in multiple contexts depending on male status (e.g. territorial or non‐territorial) and contributes to our understanding of how ecological (i.e. availability of food resources) and social factors influence aggression in a territorial ungulate.  相似文献   

17.
Of the numerous hypotheses advanced to explain the adaptive significance of play, several assert that social play increases social harmony, cementing alliances and reducing aggression between group members or littermates. These hypotheses are frequently cited, but their validity remains unknown. We examined the relation between social play and aggression in juvenile meerkats, Suricata suricatta, living in a wild population in the southern Kalahari Desert. We tested the hypothesis that social play reduces aggression, by examining rates of play, play partner choices, the structure of social play and rates of aggressive interactions during foraging. We found no relation between frequency of play and level of aggression, either between individuals or during the course of development. Pups that played together frequently were just as aggressive towards one another as pairs of pups that played infrequently, and play interactions had no subsequent effect on the likelihood of aggression. In contrast, aggressive interactions during foraging inhibited the subsequent likelihood of play, and high levels of aggression during foraging changed the structure of social play, with victimized pups avoiding play wrestling. We conclude that social play does not reduce aggression in young meerkats. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   

18.
Due to primate adaptations for sociality, captive rhesus macaques have optimal welfare and utility as a biomedical model when they can be maintained in outdoor social groups. As a despotic species; however, aggression can result in costly injuries and may result in temporary or permanent removal of specific individuals from social housing. Enrichment items, such as toys, climbing structures, and foraging material, are employed to keep captive animals occupied. We hypothesized that produce enrichment that requires more processing to extract may reduce socially‐derived injuries by keeping animals occupied. We tested the effects of additional weekly produce (corn‐in‐husk, whole melon, or whole squash) on trauma incidence in an outdoor social group of rhesus macaques across two distinct seasons (mating and birthing seasons) at the California National Primate Research Center. Aggression and status behavioral data, food resource use and proximity, and trauma incidence were collected over two 16‐week periods, with eight control and treatment conditions alternating biweekly. Mixed‐effects regression modeling was used to determine the best predictors of trauma risk and severe aggression at the group level and at an individual level. We found that food resource use was an important predictor of trauma risk at both group and individual levels; greater use of food resources reduced trauma risk. Produce enrichment did not; however, reduce severe aggression. We suggest that other captive social groups of rhesus macaques with high levels of trauma may benefit from supplemental produce enrichment that increases animal engagement with food resources.  相似文献   

19.
Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.  相似文献   

20.
《Hormones and behavior》2009,55(5):613-619
In group-living animals relative rank positions are often associated with differences in glucocorticoid output. During phases of social stability, when dominance positions are clear and unchallenged, subordinates often face higher costs in terms of social stress than dominant individuals. In this study we test this prediction and examine additional potential correlates of stress, such as reproductive season, age and amount of aggression received in wild, seasonally breeding Assamese macaques (Macaca assamensis). During a mating and a non-mating season we collected 394 h of focal observational data and 440 fecal samples of six adult and six large subadult males living in a multimale–multifemale group in their natural habitat in northeastern Thailand. The mating season was characterized by a general increase in aggressive behavior and glucocorticoid excretion across all males compared to the non-mating season. Among adult males, mating season glucocorticoid levels were significantly negatively related with dominance rank and positively with the amount of aggression received. Both relationships were non-significant among large subadult males. Thus, our results suggest that in adult Assamese macaques a high dominance position is not associated with high costs. Low costs of dominance might be induced by strong social bonds among top-ranking males, which exchange frequent affiliative interactions and serve as allies in coalitionary aggression against potentially rank-challenging subordinate males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号