首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.

Background

Recent studies indicated that microRNAs (miRNAs, miRs) were important for many biological and pathological processes, and they might be potential biomarkers for cardiovascular diseases. The present study aims to determine the release patterns of miRNAs in cardiac surgery and to analyze the ability of miRs to provide early prediction of perioperative myocardial infarction (PMI) in patients undergoing coronary artery bypass graft (CABG) surgery.

Methodology/Principal Findings

Thirty on-pump CABG patients were recruited in this study; and miR-499, miR-133a and miR-133b, cardiac troponin I (cTnI) were selected for measurement. Serial plasma samples were collected at seven perioperative time points (preoperatively, and 1, 3, 6, 12, 24, and 48 hours after declamping) and were tested for cTnI and miRs levels. Importantly, miR levels peaked as early as 1–3 hours, whereas cTnI levels peaked at 6 hours after declamping. Peak plasma concentrations of miRs correlated significantly with cTnI (miR-499, r = 0.583, P = 0.001; miR-133a, r = 0.514, P = 0.006; miR-133b, r = 0.437, P = 0.05), indicating the degree of myocardial damage. In addition, 30 off-pump CABG patients were recruited; miR-499 and miR-133a levels were tested, which were significantly lower in off-pump group than in on-pump group. A prospective cohort of CABG patients (n = 120) was recruited to study the predictive power of miRs for PMI. The diagnosis of PMI strictly adhered to the principles of universal definition of myocardial infarction. The data analysis revealed that miR-499 had higher sensitivity and specificity than cTnI, and indicated that miR-499 could be an independent risk factor for PMI.

Conclusion

Our results demonstrate that circulating miR-499 is a novel, early biomarker for identifying perioperative myocardial infarction in cardiac surgery.  相似文献   

2.

Background

Angiogenesis is regarded as a hallmark in cancer development, and anti-angiogenic treatment is presently used in non-small cell lung cancer (NSCLC) patients. MicroRNAs (miRs) are small non-coding, endogenous, single stranded RNAs that regulate gene expression. In this study we aimed to identify significantly altered miRs related to angiogenesis in NSCLC.

Methods

From a large cohort of 335 NSCLC patients, paraffin-embedded samples from 10 patients with a short disease specific survival (DSS), 10 with a long DSS and 10 normal controls were analyzed. The miRs were quantified by microarray hybridization and selected miRs were validated by real-time qPCR. The impacts of different pathways, including angiogenesis, were evaluated by Gene Set Enrichment Analysis (GSEA) derived from Protein ANalysis THrough Evolutionary Relationship (PANTHER). One of the most interesting candidate markers, miR-155, was validated by in situ hybridization (ISH) in the total cohort (n = 335) and correlation analyses with several well-known angiogenic markers were done.

Results

128 miRs were significantly up- or down-regulated; normal versus long DSS (n = 68) and/or normal versus short DSS (n = 63) and/or long versus short DSS (n = 37). The pathway analysis indicates angiogenesis-related miRs to be involved in NSCLC. There were strong significant correlations between the array hybridization and qPCR validation data. The significantly altered angiogenesis-related miRs of high interest were miR-21, miR-106a, miR-126, miR-155, miR-182, miR-210 and miR-424. miR-155 correlated significantly with fibroblast growth factor 2 (FGF2) in the total cohort (r = 0.17, P = 0.002), though most prominent in the subgroup with nodal metastasis (r = 0.34, P<0.001).

Conclusions

Several angiogenesis-related miRs are significantly altered in NSCLC. Further studies to understand their biological functions and explore their clinical relevance are warranted.  相似文献   

3.
4.

Objectives

Increased arterial stiffness is associated with left ventricular diastolic dysfunction (LVDD), but this association may be influenced by left ventricular (LV) performance. Left ventricular hypertrophy (LVH) is not only a significant determinant of LV performance, but is also correlated with LVDD. This study is designed to compare LV diastolic function among patients divided by brachial-ankle pulse wave velocity (baPWV) and electrocardiography (ECG)-determined LVH and to assess whether increased baPWV and ECG-determined LVH are independently associated with LVDD.

Methods

This cross-sectional study enrolled 270 patients and classified them into four groups according to the median value of baPWV and with/without ECG-determined LVH. The baPWV was measured using an ABI-form device. ECG-determined LVH was defined by Sokolow-Lyon criterion. LVDD was defined as impaired relaxation, pseudonormal, and restrictive mitral inflow patterns. Groups 1, 2, 3, and 4 were patients with lower baPWV and without ECG-determined LVH, lower baPWV but with ECG-determined LVH, higher baPWV but without ECG-determined LVH, and higher baPWV and with ECG-determined LVH respectively.

Results

Early diastolic mitral velocity (Ea) was gradually decreased from group 1 to group 4 (p≦0.027). Patients in group 4 had the highest prevalence of LVDD (all p<0.001). After multivariate analysis, both baPWV and ECG-determined LVH were independent determinants of Ea (β = −0.02, P<0.001; β = −1.77, P<0.001 respectively) and LVDD (odds ratio = 1.02, P = 0.011 and odds ratio = 3.53, P = 0.013 respectively).

Conclusion

Our study showed the group with higher baPWV and ECG-determined LVH had the lowest Ea and highest prevalence of LVDD. In addition, both baPWV and ECG-determined LVH were independently associated with Ea and LVDD. Hence, assessment of arterial stiffness by baPWV and LVH by ECG may be useful in identifying the high risk group of LVDD.  相似文献   

5.

Background

MicroRNAs (miRs) are a class of small non-coding RNAs that regulate gene expression. Studies of transgenic mouse models have indicated that deregulation of a single miR can induce pathological cardiac hypertrophy and cardiac failure. The roles of miRs in the genesis of physiological left ventricular hypertrophy (LVH), however, are not well understood.

Objective

To evaluate the global miR expression in an experimental model of exercise-induced LVH.

Methods

Male Balb/c mice were divided into sedentary (SED) and exercise (EXE) groups. Voluntary exercise was performed on an odometer-monitored metal wheels for 35 days. Various tests were performed after 7 and 35 days of training, including a transthoracic echocardiography, a maximal exercise test, a miR microarray (miRBase v.16) and qRT-PCR analysis.

Results

The ratio between the left ventricular weight and body weight was increased by 7% in the EXE group at day 7 (p<0.01) and by 11% at day 35 of training (p<0.001). After 7 days of training, the microarray identified 35 miRs that were differentially expressed between the two groups: 20 were up-regulated and 15 were down-regulated in the EXE group compared with the SED group (p = 0.01). At day 35 of training, 25 miRs were differentially expressed: 15 were up-regulated and 10 were decreased in the EXE animals compared with the SED animals (p<0.01). The qRT-PCR analysis demonstrated an increase in miR-150 levels after 35 days and a decrease in miR-26b, miR-27a and miR-143 after 7 days of voluntary exercise.

Conclusions

We have identified new miRs that can modulate physiological cardiac hypertrophy, particularly miR-26b, -150, -27a and -143. Our data also indicate that previously established regulatory gene pathways involved in pathological LVH are not changed in physiological LVH.  相似文献   

6.

Objective

To investigate whether microRNAs (miRs) can serve as novel biomarkers for in-stent restenosis (ISR).

Methods

This retrospective, observational single-centre study was conducted at the cardiovascular department of a tertiary hospital centre in the north of China. Follow-up coronary angiography at 6 to 12 months was performed in 181 consecutive patients implanted with drug-eluting stents. Fifty-two healthy volunteers served as the control group. The plasma miRs levels were analyzed by quantitative real-time PCR. Receiver-operating characteristic curve (ROC) analysis was performed to investigate the characters of these miRs as potential biomarkers of ISR.

Results

MiR-21 levels in ISR patients were significantly higher than those in non-ISR patients and healthy controls (P<0.05), while miR-100 (P<0.05), miR-143 (P<0.001) and miR-145 (P<0.0001) levels were significantly decreased in ISR patients. Further analysis showed that miR-21 levels were remarkably increased (P = 0.045), while miR-100 (P = 0.041), miR-143 (P = 0.029) and miR-145 (P<0.01) levels were dramatically decreased in patients with diffuse ISR compared to those with focal ISR. ROC analysis demonstrated that the area under curve of miR-145, miR-143, miR-100 and miR-21 were 0.880 (95% confidence interval; CI = 0.791–0.987, P<0.001), 0.818 (95% confidence interval; CI = 0.755–0.963, P<0.001), 0.608 (95% confidence interval; CI = 0.372–0.757, P<0.05) and 0.568 (95% confidence interval; CI = 0.372–0.757, P<0.05), with specificity of 83.1%, 80.1%, 68.9% and 68.6%, and sensitivity of 88.7%, 82.1%, 60.2% and 50.1%, respectively.

Conclusions

Circulating miR-143 and miR-145 levels are associated with the occurrence of ISR and can serve as novel noninvasive biomarkers for ISR.  相似文献   

7.

Background

MicroRNAs (miRNAs) are small ribonucleotides regulating gene expression. MicroRNAs are present in the blood in a remarkably stable form and have emerged as potential diagnostic markers in patients with cardiovascular disease. Our study aimed to assess circulating miR-133a levels in MHD patients and the relation of miR-133a to cardiac hypertrophy.

Methods

We profiled miRNAs using RNA isolated from the plasma of participants. The results were validated in 64 MHD patients and 18 healthy controls.

Results

Levels of plasma miR-133a decreased in MHD patients with LVH compared with those in healthy controls. Plasma miR-133a concentrations were negatively correlated with LVMI and IVS. After single hemodialytic treatment, plasma miR-133a levels remained unchanged. Cardiac Troponin I and T were not associated with LVMI and IVS.

Conclusions

Our observations supplied the possibility that circulating miR-133a could be a surrogate biomarker of cardiac hypertrophy in MHD patients.  相似文献   

8.

Background

Left ventricular hypertrophy (LVH) is an independent predictor of cardiac mortality, regardless of its etiology. Previous studies have shown that high nocturnal blood pressure (BP) affects LV geometry in hypertensive patients. It has been suggested that continuous pressure overload affects the development of LVH, but it is unknown whether persistent pressure influences myocardial fibrosis or whether the etiology of LVH is associated with myocardial fibrosis. Comprehensive cardiac magnetic resonance (CMR) including the late gadolinium enhancement (LGE) technique can evaluate both the severity of changes in LV geometry and myocardial fibrosis. We tested the hypothesis that the nocturnal non-dipper BP pattern causes LV remodeling and fibrosis in patients with hypertension and LVH.

Methods

Forty-seven hypertensive patients with LVH evaluated by echocardiography (29 men, age 73.0±10.4 years) were examined by comprehensive CMR and 24-h ambulatory blood pressure monitoring (ABPM).

Results and Conclusions

Among the 47 patients, twenty-four had nocturnal non-dipper BP patterns. Patients with nocturnal non-dipper BP patterns had larger LV masses and scar volumes independent of etiologies than those in patients with dipper BP patterns (p = 0.035 and p = 0.015, respectively). There was no significant difference in mean 24-h systolic BP between patients with and without nocturnal dipper BP patterns (p = 0.367). Among hypertensive patients with LVH, the nocturnal non-dipper blood pressure pattern is associated with both LV remodeling and myocardial fibrosis independent of LVH etiology.  相似文献   

9.

Purpose

To identify tissue microRNAs predictive of sunitinib activity in patients with metastatic renal-cell-carcinoma (MRCC) and to evaluate in vitro their mechanism of action in sunitinib resistance.

Methods

We screened 673 microRNAs using TaqMan Low-density-Arrays (TLDAs) in tumors from MRCC patients with extreme phenotypes of marked efficacy and resistance to sunitinib, selected from an identification cohort (n = 41). The most relevant differentially expressed microRNAs were selected using bioinformatics-based target prediction analysis and quantified by qRT-PCR in tumors from patients presenting similar phenotypes selected from an independent cohort (n = 101). In vitro experiments were conducted to study the role of miR-942 in sunitinib resistance.

Results

TLDAs identified 64 microRNAs differentially expressed in the identification cohort. Seven candidates were quantified by qRT-PCR in the independent series. MiR-942 was the most accurate predictor of sunitinib efficacy (p = 0.0074). High expression of miR-942, miR-628-5p, miR-133a, and miR-484 was significantly associated with decreased time to progression and overall survival. These microRNAs were also overexpressed in the sunitinib resistant cell line Caki-2 in comparison with the sensitive cell line. MiR-942 overexpression in Caki-2 up-regulates MMP-9 and VEGF secretion which, in turn, promote HBMEC endothelial migration and sunitinib resistance.

Conclusions

We identified differentially expressed microRNAs in MRCC patients presenting marked sensitivity or resistance to sunitinib. MiR-942 was the best predictor of efficacy. We describe a novel paracrine mechanism through which high miR-942 levels in MRCC cells up-regulates MMP-9 and VEGF secretion to enhance endothelial migration and sunitinib resistance. Our results support further validation of these miRNA in clinical confirmatory studies.  相似文献   

10.

Background

Prediction of clinical outcome after acute myocardial infarction (AMI) is challenging and would benefit from new biomarkers. We investigated the prognostic value of 4 circulating microRNAs (miRNAs) after AMI.

Methods

We enrolled 150 patients after AMI. Blood samples were obtained at discharge for determination of N-terminal pro-brain natriuretic peptide (Nt-proBNP) and levels of miR-16, miR-27a, miR-101 and miR-150. Patients were assessed by echocardiography at 6 months follow-up and the wall motion index score (WMIS) was used as an indicator of left ventricular (LV) contractility. We assessed the added predictive value of miRNAs against a multi-parameter clinical model including Nt-proBNP.

Results

Patients with anterior AMI and elevated Nt-proBNP levels at discharge from the hospital were at high risk of subsequent impaired LV contractility (follow-up WMIS>1.2, n = 71). A combination of the 4 miRNAs (miR-16/27a/101/150) improved the prediction of LV contractility based on clinical variables (P = 0.005). Patients with low levels of miR-150 (odds ratio [95% confidence interval] 0.08 [0.01–0.48]) or miR-101 (0.19 [0.04–0.97]) and elevated levels of miR-16 (15.9 [2.63–95.91]) or miR-27a (4.18 [1.36–12.83]) were at high risk of impaired LV contractility. The 4 miRNA panel reclassified a significant proportion of patients with a net reclassification improvement of 66% (P = 0.00005) and an integrated discrimination improvement of 0.08 (P = 0.001).

Conclusion

Our results indicate that panels of miRNAs may aid in prognostication of outcome after AMI.  相似文献   

11.
12.

Purpose

The purpose of this study was to determine if microRNA profiling of urine and plasma at radical prostatectomy can distinguish potentially lethal from indolent prostate cancer.

Materials and Methods

A panel of microRNAs was profiled in the plasma of 70 patients and the urine of 33 patients collected prior to radical prostatectomy. Expression of microRNAs was correlated to the clinical endpoints at a follow-up time of 3.9 years to identify microRNAs that may predict clinical response after radical prostatectomy. A machine learning approach was applied to test the predictive ability of all microRNAs profiled in urine, plasma, and a combination of both, and global performance assessed using the area under the receiver operator characteristic curve (AUC). Validation of urinary expression of miRNAs was performed on a further independent cohort of 36 patients.

Results

The best predictor in plasma using eight miRs yielded only moderate predictive performance (AUC = 0.62). The best predictor of high-risk disease was achieved using miR-16, miR-21 and miR-222 measured in urine (AUC = 0.75). This combination of three microRNAs in urine was a better predictor of high-risk disease than any individual microRNA. Using a different methodology we found that this set of miRNAs was unable to predict high-volume, high-grade disease.

Conclusions

Our initial findings suggested that plasma and urinary profiling of microRNAs at radical prostatectomy may allow prognostication of prostate cancer behaviour. However we found that the microRNA expression signature failed to validate in an independent cohort of patients using a different platform for PCR. This highlights the need for independent validation patient cohorts and suggests that urinary microRNA signatures at radical prostatectomy may not be a robust way to predict the course of clinical disease after definitive treatment for prostate cancer.  相似文献   

13.

Aims

Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression.

Methods and Results

First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3''UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3''UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004).

Conclusions

We found that levels of miRNA-378 could modulate adiponectin expression via the 3''UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression.  相似文献   

14.

Background

MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis.

Methodology/Principal Findings

We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression.

Conclusions/Significance

Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis.  相似文献   

15.

Background

Adiponectin directly protects against cardiac remodeling. Despite this beneficial effect, most epidemiological studies have reported a negative relationship between adiponectin level and left ventricular mass index (LVMI). However, a positive relationship has also been reported in subjects at high risk of left ventricular hypertrophy (LVH). Based on these conflicting results, we hypothesized that the relationship between serum adiponectin level and LVMI varies with the risk of LVH.

Methods

A community-based, cross-sectional study was performed on 1414 subjects. LVMI was measured by echocardiography. Log-transformed adiponectin levels (Log-ADPN) were used for the analysis.

Results

Serum adiponectin level had a biphasic distribution (an increase after a decrease) with increasing LVMI. Although Log-ADPN did not correlate with LVMI, Log-ADPN was modestly associated with LVMI in the multivariate analysis (β = 0.079, p = 0.001). The relationship between adiponectin level and LVMI was bidirectional according to the risk of LVH. In normotensive subjects younger than 50 years, Log-ADPN negatively correlated with LVMI (r = −0.204, p = 0.005); however, Log-ADPN positively correlated with LVMI in ≥50-year-old obese subjects with high arterial stiffness (r = 0.189, p = 0.030). The correlation coefficient between Log-ADPN and LVMI gradually changed from negative to positive with increasing risk factors for LVH. The risk of LVH significantly interacted with the relationship between Log-ADPN and LVMI. In the multivariate analysis, Log-ADPN was associated with LVMI in the subjects at risk of LVH; however, Log-ADPN was either not associated or negatively associated with LVMI in subjects at low risk of LVH.

Conclusion

Adiponectin level and LVMI are negatively associated in subjects at low risk of LVH and are positively associated in subjects at high risk of LVH. Therefore, the relationship between adiponectin and LVMI varies with the risk of LVH.  相似文献   

16.

Aim

microRNAs (miRNAs) are involved in various neoplastic diseases, including prostate cancer (PCs). The aim of this study was to investigate the miRNA profile in PC tissue, to assess their association with clinicopathologic data, and to evaluate the potential of miRNAs as diagnostic and prognostic markers.

Materials and Methods

From a cohort of 535 patients submitted to radical prostatectomy (RP), a sample of 30 patients (14 patients with rapid biochemical failure (BF) and 16 patients without BF) with Gleason score 7 were analyzed. A total of 1435 miRNAs were quantified by microarray hybridization, and selected miRNAs with the highest Standard deviation (n = 50) were validated by real-time quantitative PCR (qRT-PCR). In situ hybridization (ISH) was used to evaluate the expression of miR-21.

Results

miR-21 was the only miR that was significantly up-regulated in the BF group (p = 0.045) miR-21 was up-regulated in patients with BF compared with non-BF group (p = 0.05). In univariate analyses, high stromal expression of miR-21 had predictive impact on biochemical failure-free survival (BFFS) and clinical failure-free survival (CFFS) (p = 0.006 and p = 0.04, respectively). In the multivariate analysis, high stromal expression of miR-21 expression was found to be an independent prognostic factor for BFFS in patients with Gleason score 6 (HR 2.41, CI 95% 1.06–5.49, p = 0.037).

Conclusion

High stromal expression of miR-21 was associated with poor biochemical recurrence-free survival after RP. For patients with Gleason score 6, miR-21 may help predict the risk of future disease progression and thereby help select patients for potential adjuvant treatment or a more stringent follow-up.  相似文献   

17.

Background and Purpose

Platelet surface expression of stromal-cell-derived factor-1 (SDF-1) is increased during platelet activation and constitutes an important factor in hematopoetic progenitor cell trafficking at sites of vascular injury and ischemia. Enhanced platelet SDF-1 expression has been reported previously in patients suffering from acute coronary syndrome (ACS). We hypothesized that expression of platelet associated SDF-1 may also be influenced by calcified valvular aortic stenosis (AS).

Methods

We consecutively evaluated 941 patients, who were admitted to the emergency department with dyspnea and chest pain. Platelet surface expression of SDF-1 was determined by flow cytometry, AS was assessed using echocardiography and hemodynamic assessment by heart catheterization. A 1∶1 propensity score matching was implemented to match 218 cases with 109 pairs adjusting for age, sex, cardiovascular risk factors, and medication including ACE inhibitors, angiotensin receptor blockers, beta blockers, statins, aspirin, clopidogrel, GPIIb/IIIa antagonists, and vitamin K antagonists.

Results

Patients with valvular AS showed enhanced platelet SDF-1 expression compared to patients without AS (non-valvular disease, NV) independent of ACS and stable coronary artery disease (SAP) [mean fluorescence intensity (MFI) for ACS (AS vs. NV): 75±40.4 vs. 39.5±23.3; P = 0.002; for SAP (AS vs. NV): 54.9±44.6 vs. 24.3±11.2; P = 0.008]. Moreover, the degree of AS significantly correlated with SDF-1 platelet surface expression (r = 0.462; P = 0.002).

Conclusions

Valvular AS is associated with enhanced platelet-SDF-1 expression; moreover the degree of valvular AS correlates with SDF-1 platelet surface expression. These findings may have clinical implications in the future.  相似文献   

18.

Background

Cell-free microRNAs stably and abundantly exist in body fluids and emerging evidence suggests cell-free microRNAs as novel and non-invasive disease biomarker. Deregulation of miR-29 is involved in the pathogenesis of diabetic nephropathy and insulin resistance thus may be implicated in diabetic vascular complication. Therefore, we investigated the possibility of urinary miR-29 as biomarker for diabetic nephropathy and atherosclerosis in patients with type 2 diabetes.

Methods

83 patients with type 2 diabetes were enrolled in this study, miR-29a, miR-29b and miR-29c levels in urine supernatant was determined by TaqMan qRT-PCR, and a synthetic cel-miR-39 was added to the urine as a spike-in control before miRNAs extraction. Urinary albumin excretion rate and urine albumin/creatinine ratio, funduscopy and carotid ultrasound were used for evaluation of diabetic vascular complication. The laboratory parameters indicating blood glucose level, renal function and serum lipids were also collected.

Results

Patients with albuminuria (n = 42, age 60.62±12.00yrs) showed significantly higher comorbidity of diabetic retinopathy (p = 0.015) and higher levels of urinary miR-29a (p = 0.035) compared with those with normoalbuminuria (n = 41, age 58.54±14.40yrs). There was no significant difference in urinary miR-29b (p = 0.148) or miR-29c level (p = 0.321) between groups. Urinary albumin excretion rate significantly correlated with urinary miR-29a level (r = 0.286, p = 0.016), while urinary miR-29b significantly correlated with carotid intima-media thickness (cIMT) (r = 0.286, p = 0.046).

Conclusion

Urinary miR-29a correlated with albuminuria while urinary miR-29b correlated with carotid intima-media thickness (cIMT) in patients with type 2 diabetes. Therefore, they may have the potential to serve as alternative biomarker for diabetic nephropathy and atherosclerosis in type 2 diabetes.  相似文献   

19.

Background

The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer progression and may promote resistance to therapy. An analysis of patients (n = 71) profiled with both gene expression and a global microRNA assessment (∼415 miRs) identified miR-147 as highly anti-correlated with an EMT gene expression signature score and postulated to reverse EMT (MET).

Methods and Findings

miR-147 was transfected into colon cancer cells (HCT116, SW480) as well as lung cancer cells (A-549). The cells were assessed for morphological changes, and evaluated for effects on invasion, motility, and the expression of key EMT markers. Resistance to chemotherapy was evaluated by treating cells with gefitinib, an EGFR inhibitor. The downstream genes regulated by miR-147 were assayed using the Affymetrix GeneChip U133 Plus2.0 platform. miR-147 was identified to: 1. cause MET primarily by increasing the expression of CDH1 and decreasing that of ZEB1; 2. inhibit the invasion and motility of cells; 3. cause G1 arrest by up-regulating p27 and down-regulating cyclin D1. miR-147 also dramatically reversed the native drug resistance of the colon cancer cell line HCT116 to gefitinib. miR-147 significantly repressed Akt phosphorylation, and knockdown of Akt with siRNA induced MET. The morphologic effects of miR-147 on cells appear to be attenuated by TGF-B1, promoting a plastic and reversible transition between MET and EMT.

Conclusion

miR-147 induced cancer cells to undergo MET and induced cell cycle arrest, suggesting a potential tumor suppressor role. miR-147 strikingly increased the sensitivity to EGFR inhibitor, gefitinib in cell with native resistance. We conclude that miR-147 might have therapeutic potential given its ability to inhibit proliferation, induce MET, as well as reverse drug sensitivity.  相似文献   

20.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号