首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis.Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions.The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program.In this short review we touch upon aspects which are the subject of our present work.We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells.The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.  相似文献   

2.
Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell lines representative of the primary disease has hampered a full understanding of disease pathogenesis and development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice, producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene function in this disease.  相似文献   

3.
PurposeAcute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML.MethodsCD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells.ResultsWe have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells.ConclusionsThe bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.  相似文献   

4.
The proliferative capacity of lymphocytes from peripheral blood of bovine with chronic lymphocytic leukemia (CLL) in vitro was investigated. We have shown earlier that CLL cells spontaneously proliferate in serum-free medium in the absence of added growth factors and mitogenic stimulation; autocrine growth factors provide the growth-initiating signal for CLL cells. The results of the present study showed that bovine serum albumin or fetal calf serum greatly enhanced the number of CLL cells incorporating [3H]thymidine. Although some CLL cells proceeded through more than one cell cycle, proliferation of CLL cells in culture was temporary. On the other hand, it was shown that CLL cells differentiated spontaneously in culture. This differentiation was characterized by the appearance of plasmacytoid cells possessing cytoplasmic immunoglobulins that coincided with the cessation of cell proliferation. Moreover, together with spontaneous proliferation and differentiation, the phenomenon of programmed cell death (apoptosis) was found, as was evidenced by the appearance of apoptotic bodies as well as DNA fragmentation. The findings indicate that the loss of proliferative potential of CLL cells in culture may be a consequence of their differentiation and/or apoptosis in vitro. CLL cells, with an autotrine growth mechanism, spontaneous differentiation, and apoptosis in vitro, provide a new model system for studies of the relationship between cellular proto-oncogene expression and inhibition of growth and/or induction of differentiation.  相似文献   

5.
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.  相似文献   

6.
Epstein-Barr virus (EBV) is a human tumor virus and a paradigm of herpesviral latency. Mature naïve or memory B cells are EBV's preferred targets in vitro and in vivo. Upon infection of any B cell with EBV, the virus induces cellular proliferation to yield lymphoblastoid cell lines (LCLs) in vitro and establishes a latent infection in them. In these cells a ‘classical’ subset of latent viral genes is expressed that orchestrate and regulate cellular activation and proliferation, prevent apoptosis, and maintain viral latency. Surprisingly, little is known about the early events in primary human B cells infected with EBV. Recent analyses have revealed the initial but transient expression of additional viral genes that do not belong to the ‘classical’ latent subset. Some of these viral genes have been known to initiate the lytic, productive phase of EBV but virus synthesis does not take place early after infection. The early but transient expression of certain viral lytic genes is essential for or contributes to the initial survival and cell cycle entry of resting B cells to foster their proliferation and sustain a latent infection. This review summarizes the recent findings and discusses the presumed function(s) of viral genes expressed shortly but transiently after infection of B-lymphocytes with EBV.  相似文献   

7.
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.  相似文献   

8.
Background aimsThere is increasing interest in using γδ T cells (GDTC) for cancer immunotherapy. Most studies have been concerned with the Vδ2 subset in blood, for which several expansion protocols exist. We have developed a protocol to expand Vδ1 and Vδ2 preferentially from human blood. We have characterized these subsets and their specificities for leukemic targets.MethodsGDTC were isolated from the peripheral blood mononuclear cells (PBMC) of healthy donors via positive magnetic cell sorting; their proliferation in vitro was induced by exposure to the mitogen concanavalin A (Con A). CD107 and cytotoxicity (Cr51-release and flow cytometric) assays were performed. GDTC clones and target cells were immunophenotyped via flow cytometry.ResultsLonger initial exposure to Con A typically resulted in higher Vδ1 prevalence. Vδ1 were activated by and cytotoxic to B-cell chronic lymphocytic leukemia (B-CLL)-derived MEC1 cells, whereas Vδ2 also responded to MEC1 but more so to the Philadelphia chromosome-positive [Ph+] leukemia cell line EM-enhanced green fluorescent protein (2eGFPluc). Vδ2 clone cytotoxicity against EM-2eGFPluc correlated with Vδ2 T-cell antigen receptor (TCR) and receptor found on Natural Killer cells and many T-cells (NKG2D), whereas Vδ1 clone cytotoxicity versus MEC1 correlated with Vδ1 TCR, CD56 and CD95 expression. Vδ1 also killed Epstein-Barr Virus (EBV)-negative B-CLL-derived TMD2 cells. Immunophenotyping revealed reduced HLA-ABC expression on EM-2eGFPluc, whereas MEC1 and TMD2 exhibited higher Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAILR1).ConclusionsOur ability to expand peripheral Vδ1 cells and show their cytotoxicity to B-CLL-derived cell lines suggests that this novel approach to the cellular treatment of B-CLL may be feasible.  相似文献   

9.
Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus that infects more than 90% of the world population. The potential involvement of EBV in the clinical course of chronic lymphocytic leukemia (CLL) remains unexplained. The aim of this study was to determine whether EBV-DNA load in the peripheral blood mononuclear cells (PBMCs) of CLL patients may influence heterogeneity in the course of the disease. The study included peripheral blood samples from 115 previously untreated patients with CLL (54 women and 61 men) and 40 healthy controls (16 women and 24 men). We analyzed the association between the EBV-DNA load in PBMCs and the stage of the disease, adverse prognostic factors, and clinical outcome. Detectable numbers of EBV-DNA copies in PBMCs were found in 62 out of 115 CLL patients (53.91%). The EBV-DNA copy number/μg DNA was significantly higher in patients who required early implementation of treatment, presented with lymphocyte count doubling time <12 months, displayed CD38-positive or ZAP-70-positive phenotype, and with the del(11q22.3) cytogenetic abnormality. Furthermore, the EBV-DNA copy number/μg DNA showed significant positive correlation with the concentrations of lactate dehydrogenase (LDH) and beta-2-microglobulin. We have shown that in CLL patients, higher EBV-DNA copy number predicted shorter survival and shorter time to disease progression, and it was associated with other established unfavorable prognostic factors. This suggests that EBV may negatively affect the outcome of CLL.  相似文献   

10.
The microbial electrolysis cell (MEC) is a promising system for H2 production, but little is known about the active microbial population in MEC systems. Therefore, the microbial community of five different MEC graphite felt anodes was analyzed using denaturing gradient gel electrophoresis (DGGE) profiling. The results showed that the bacterial population was very diverse and there were substantial differences between microorganisms in anolyte and anode samples. The archaeal population in the anolyte and at the anodes, and between the different MEC anodes, was very similar. SEM and FISH imaging showed that Archaea were mainly present in the spaces between the electrode fibers and Bacteria were present at the fiber surface, which suggested that Bacteria were the main microorganisms involved in MEC electrochemical activity. Redundancy analysis (RDA) and QR factorization-based estimation (QRE) were used to link the composition of the bacterial community to electrochemical performance of the MEC. The operational mode of the MECs and their consequent effects on current density and anode resistance on the populations were significant. The results showed that the community composition was most strongly correlated with current density. The DGGE band mostly correlated with current represented a Clostridium sticklandii strain, suggesting that this species had a major role in current from acetate generation at the MEC anodes. The combination of RDA and QRE seemed especially promising for obtaining an insight into the part of the microbial population actively involved in electrode interaction in the MEC.  相似文献   

11.
Infection of B cells with Epstein-Barr virus (EBV) leads to proliferation and subsequent immortalization, resulting in establishment of lymphoblastoid cell lines (LCL) in vitro. Since LCL are latently infected with EBV, they provide a model system to investigate EBV latency and virus-driven B cell proliferation and tumorigenesis1. LCL have been used to present antigens in a variety of immunologic assays2, 3. In addition, LCL can be used to generate human monoclonal antibodies4, 5 and provide a potentially unlimited source when access to primary biologic materials is limited6, 7.A variety of methods have been described to generate LCL. Earlier methods have included the use of mitogens such as phytohemagglutinin, lipopolysaccharide8, and pokeweed mitogen9 to increase the efficiency of EBV-mediated immortalization. More recently, others have used immunosuppressive agents such as cyclosporin A to inhibit T cell-mediated killing of infected B cells7, 10-12.The considerable length of time from EBV infection to establishment of cell lines drives the requirement for quicker and more reliable methods for EBV-driven B cell growth transformation. Using a combination of high titer EBV and an immunosuppressive agent, we are able to consistently infect, transform, and generate LCL from B cells in peripheral blood. This method uses a small amount of peripheral blood mononuclear cells that are infected in vitroclusters of cells can be demonstrated. The presence of CD23 with EBV in the presence of FK506, a T cell immunosuppressant. Traditionally, outgrowth of proliferating B cells is monitored by visualization of microscopic clusters of cells about a week after infection with EBV. Clumps of LCL can be seen by the naked eye after several weeks. We describe an assay to determine early if EBV-mediated growth transformation is successful even before microscopic clusters of cells can be demonstrated. The presence of CD23hiCD58+ cells observed as early as three days post-infection indicates a successful outcome.  相似文献   

12.
Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.  相似文献   

13.
14.
The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These "stereotyped" BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone.  相似文献   

15.
Human B-lymphoid cell lines.   总被引:1,自引:0,他引:1  
K Nilsson 《Human cell》1992,5(1):25-41
The collective efforts during almost three decades by hematologists, tumor biologists and immunologists have provided a collection of established human hematopoietic cell lines, representing most of the hematopoietic cell lineages. The representativity of cell lines derived from the B cell differentiation lineage, however, is the most impressive. Human B-lymphoid cell lines are extensively used world wide as models in studies of various aspects of B cell biology and as tools in research on the etiology, pathogenesis and the biology of leukemia and lymphoma. Lymphoblastoid cell lines (LCL) carrying the Epstein-Barr Virus (EBV) are of particular importance. These lines can be established spontaneously from blood and lymphoid tissue from any EBV positive individual by special techniques, and from all individuals by EBV infection of peripheral blood B cells by EBV infection in vitro. At spontaneous establishment B cells, latently infected by EBV in vivo, will release EBV which subsequently infects normal EBV-negative B cells and immortalizes them into LCL cells, but direct outgrowth of the latently infected B cells as LCLs has also been documented. The target B cells for the EBV infection in vitro are not fully defined-most are mature B cells but also pro-B and pre-B and some B-blasts can be infected. Apart from their capacity for infinite growth, LCL cells have non-malignant properties, e. g. they are diploid, do not grow in agarose and do not form tumors upon inoculation subcutaneously in nude mice. LCLs have a phenotype corresponding to activated B cells (B-blasts) and have been used as "the E. Coli" of eukaryotic cells for about two decades. LCLs are derived at a high frequency also from tumor biopsies of EBV positive patients with leukemia and lymphoma. However, tumor cell lines are available from most of the B cell lineage-derived leukemias, B-lymphomas and myeloma. The frequency of successful establishment has been particularly high from EBV positive Burkitt's lymphoma (BL). From EBV genome negative BL and other B-lymphoma and B-leukemia biopsies the frequency of successful, spontaneous establishment is low (5-10%), and such lines have, with rare exceptions, been derived from pleural effusions and ascitis of patients with advanced, chemotherapy resistant, disease. Many of the cell lines therefore do not represent the clinically most common types of leukemia and lymphoma. No authentic malignant cell lines have been established from chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL) and Waldenstr?m's disease.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.

Background

Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95% of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV''s pathogenesis and latency in a suitable and amenable host.

Methodology/Principal Findings

We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV''s nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation.

Conclusions/Significance

Our findings indicate that fundamental differences in gene regulation between mouse and man might block the route towards a tractable murine model for EBV.  相似文献   

17.
18.
B-chronic lymphocytic leukemia (B-CLL), the most common human leukemia, is characterized by predominantly non-dividing malignant mature CD5+ B lymphocytes with an apoptosis defect. Various microenvironmental stimuli confer a growth advantage on these leukemic cells and extend their survival in vivo. Nevertheless, when cultured in vitro, CLL B-cells rapidly die from apoptosis. Certain cytokines may extend the survival capacity of CLL B-cells in vitro and individual anti-apoptotic effects of several cytokines have been reported. The potential cumulative effect of such cytokines has not been studied. We therefore investigated the effects on CLL B-cells survival in vitro of humoral factors, polyclonal lymphocyte activators and a combination of cytokines known for their anti-apoptotic effects. Purified CLL B-cells were cultured in the presence or absence of various soluble molecules and the leukemic cell response was assessed in terms of viability. Apoptotic cell death was detected by flow cytometry using annexinV and 7-amino-actinomycin. The survival of CLL B-cells in vitro was highly variable. When tested separately, cytokines (IL-2, -6, -10, -12, -15, -21, BAFF and APRIL) improved CLL B cell survival moderately; in combination, they significantly enhanced survival of these cells, even up to 7 days of culture. We also report that humoral factors from autologous serum are important for survival of these malignant cells. Our findings support the concept that the CLL microenvironment is critical and suggest that soluble factors may contribute directly to the prolonged survival of CLL B-cells. Therefore, the combination of cytokines we describe as providing strong resistance to apoptosis in vitro might be used to improve the treatment of CLL.  相似文献   

19.
ABSTRACT. The clonal life history of ciliated protists is characterized by a sequence of phenotypes; sexual immaturity, maturity, and senescence. The distinctiveness of immaturity and maturity has been investigated. Standard assays of the onset of maturity of progeny clones from a cross between stocks EC1 and EC2 of Euplotes crassus demonstrated significant differences among clones and among testers within clones. They also revealed that the first positive test(s) of a progeny subclone were typically followed by at least one negative test. Special protocols were devised to investigate if maturity was reversible at the cellular level. In these experiments, the first mating pair of a progeny subclone was split before the consummation of mating. From these two cells as well as from control progeny and tester cells, subclones were established and every leftover cell was tested for maturity after each transfer. Both standard and split-pair progeny subclones had immature and slow- to-mate cells. The number of fissions before progeny exhibited sexual behavior indistinguishable from the testers was more than twice that to the first mating reaction of a subclone. At the first sign of maturity, progeny lines are a heterogeneous population of cells able and not able to mate, but remarkably, clonal descendants of those able to mate may become unable to mate. The development of maturity is progressive, quantitative and non-monotonic rather than an instantaneous switch.  相似文献   

20.
B-cell chronic lymphocytic leukemia (CLL) remains an incurable disease, and despite the improvement achieved by therapeutic regimes developed over the last years still a subset of patients face a rather poor prognosis and will eventually relapse and become refractory to therapy. The natural rotenoid deguelin has been shown to induce apoptosis in several cancer cells and cell lines, including primary human CLL cells, and to act as a chemopreventive agent in animal models of induced carcinogenesis. In this work, we show that deguelin induces apoptosis in vitro in primary human CLL cells and in CLL-like cells from the New Zealand Black (NZB) mouse strain. In both of them, deguelin dowregulates AKT, NFκB and several downstream antiapoptotic proteins (XIAP, cIAP, BCL2, BCL-XL and survivin), activating the mitochondrial pathway of apoptosis. Moreover, deguelin inhibits stromal cell-mediated c-Myc upregulation and resistance to fludarabine, increasing fludarabine induced DNA damage. We further show that deguelin has activity in vivo against NZB CLL-like cells in an experimental model of CLL in young NZB mice transplanted with spleen cells from aged NZB mice with lymphoproliferation. Moreover, the combination of deguelin and fludarabine in this model prolonged the survival of transplanted mice at doses of both compounds that were ineffective when administered individually. These results suggest deguelin could have potential for the treatment of human CLL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号