首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

2.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

3.
Glutamate scanning mutagenesis was used to assess the role of the calcicludine binding segment in regulating channel permeation and gating using both Ca2+ and Ba2+ as charge carriers. As expected, wild-type CaV1.2 channels had a Ba2+ conductance ~2× that in Ca2+ (GBa/GCa = 2) and activation was ~10 mV more positive in Ca2+ vs. Ba2+. Of the 11 mutants tested, F1126E was the only one that showed unique permeation and gating properties compared to the wild type. F1126E equalized the CaV1.2 channel conductance (GBa/GCa = 1) and activation voltage dependence between Ca2+ and Ba2+. Ba2+ permeation was reduced because the interactions among multiple Ba2+ ions and the pore were specifically altered for F1126E, which resulted in Ca2+-like ionic conductance and unitary current. However, the high-affinity block of monovalent cation flux was not altered for either Ca2+ or Ba2+. The half-activation voltage of F1126E in Ba2+ was depolarized to match that in Ca2+, which was unchanged from that in the wild type. As a result, the voltages for half-activation and half-inactivation of F1126E in Ba2+ and Ca2+ were similar to those of wild-type in Ca2+. This effect was specific to F1126E since F1126A did not affect the half-activation voltage in either Ca2+ or Ba2+. These results indicate that residues in the outer vestibule of the CaV1.2 channel pore are major determinants of channel gating, selectivity, and permeation.  相似文献   

4.
Recently, we showed that the HOOK region of the β2 subunit electrostatically interacts with the plasma membrane and regulates the current inactivation and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of voltage-gated Ca2+ (CaV) 2.2 channels. Here, we report that voltage-dependent gating and current density of the CaV2.2 channels are also regulated by the HOOK region of the β2 subunit. The HOOK region can be divided into 3 domains: S (polyserine), A (polyacidic), and B (polybasic). We found that the A domain shifted the voltage-dependent inactivation and activation of CaV2.2 channels to more hyperpolarized and depolarized voltages, respectively, whereas the B domain evoked these responses in the opposite directions. In addition, the A domain decreased the current density of the CaV2.2 channels, while the B domain increased it. Together, our data demonstrate that the flexible HOOK region of the β2 subunit plays an important role in determining the overall CaV channel gating properties.  相似文献   

5.
G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.  相似文献   

6.
《Proteins》2018,86(4):414-422
CaV channels are transmembrane proteins that mediate and regulate ion fluxes across cell membranes, and they are activated in response to action potentials to allow Ca2+ influx. Since ion channels are composed of charge or polar groups, an external alternating electric field may affect the ion‐selective membrane transport and the performance of the channel. In this article, we have investigated the effect of an external GHz electric field on the dynamics of calcium ions in the selectivity filter of the CaVAb channel. Molecular dynamics (MD) simulations and the potential of mean force (PMF) calculations were carried out, via the umbrella sampling method, to determine the free energy profile of Ca2+ ions in the CaVAb channels in presence and absence of an external field. Exposing CaVAb channel to 1, 2, 3, 4, and 5 GHz electric fields increases the depth of the potential energy well and this may result in an increase in the affinity and strength of Ca2+ ions to binding sites in the selectivity filter the channel. This increase of strength of Ca2+ ions binding in the selectivity filter may interrupt the mechanism of Ca2+ ion conduction, and leads to a reduction of Ca2+ ion permeation through the CaVAb channel.  相似文献   

7.
Spermine (Spe) is a polyamine co-secreted with neurotransmitters. In this work its effects on N-type Ca2+ channel (CaV2.2) have been studied on adult sensory neurons of the rat by means of whole-cell patch-clamp. Spe exerted biphasic effects when added to the external solution: at 500 μM decreased N-type Ca2+ channel currents, reducing the maximum whole-cell conductance, shifting the activation curve to the right on the voltage axes and decreasing its slope; conversely, at lower concentration (500 nM) Spe induced completely opposite effects. In 62% of the neurons the inhibitory effects were accompanied by a slowing down of the activation kinetics relieved by a conditioning pre-pulse to + 50 mV. The biphasic effects and their rapid onset and offset time course may be explained if multiple sites of action with a different affinity for Spe are present directly on the channel. The effects of Spe on HVA Ca2+ currents were strongly dependent on [Ca2+]ext, high [Ca2+] powerfully reducing Spe effects. This may be explained if we take into account that as Spe has four positive charges at physiological pH; it may compete with divalent cations for some negatively charged regulatory sites. In these experiments, Spe was effective at concentrations possibly reached in physiological conditions.  相似文献   

8.
The plasma membrane of Chara corallina was made accessible for patch pipettes by cutting a small window through the cell wall of plasmolyzed internodal cells. With pipettes containing Cl as Ca2+ or Ba2+ (50 or 100 mm), but not as Mg2+ or K+ salt, it was possible to record in the cell-attached mode for long periods with little channel activity, randomly interspersed with intervals of transient activation of two Cl channel types (cord conductance at +50 mV: 52 and 16 pS, respectively). During these periods of transient channel activity, variable numbers (up to some 10) of the two Cl channel types activated and again inactivated over several 100 msec in a coordinated fashion. Transient Cl channel activity was favored by voltages positive of the free running membrane voltage (> –45 mV); but positive voltage alone was neither a sufficient nor a necessary condition for activtion of these channels. Neither type of Cl channel was markedly voltage dependent. A third, nonselective 4 pS channel is a candidate for Ca2+ translocation. The activity of this channel does not correlate in time with the transient activity of the Cl channels. The entire set of results is consistent with the following microscopic mechanism of action potentials in Chara, concerning the role of Ca2+ and Cl for triggering and time course: Ca2+ uptake does not activate Cl channels directly but first supplies a membrane-associated population of Ca2+ storage sites. Depolarization enhances discharge of Ca2+ from these elements (none or few under the patch pipette) resulting in a local and transient increase of free Ca2+ concentration ([Ca2+]cyt) at the inner side of the membrane before being scavenged by the cytoplasmic Ca2+ buffer system. In turn, the transient rise in [Ca2+]cyt causes the transient activity of those Cl channels, which are more likely to open at an elevated Ca2+ concentration.The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.  相似文献   

9.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

10.
T-type Ca2+ channel family includes three subunits CaV3.1, CaV3.2 and CaV3.3 and have been shown to control burst firing and intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigated whether CaV3.1 channels could generate a pacemaker current and contribute to cell excitability. CaV3.1 clones were over-expressed in the neuronal cell line NG108-15. CaV3.1 channel expression induced repetitive action potentials, generating spontaneous membrane potential oscillations (MPOs) and concomitant [Ca2+]i oscillations. These oscillations were inhibited by T-type channels antagonists and were present only if the membrane potential was around −61 mV. [Ca2+]i oscillations were critically dependent on Ca2+ influx through CaV3.1 channels and did not involve Ca2+ release from the endoplasmic reticulum. The waveform and frequency of the MPOs are constrained by electrophysiological properties of the CaV3.1 channels. The trigger of the oscillations was the CaV3.1 window current. This current induced continuous [Ca2+]i increase at −60 mV that depolarized the cells and triggered MPOs. Shifting the CaV3.1 window current potential range by increasing the external Ca2+ concentration resulted in a corresponding shift of the MPOs threshold. The hyperpolarization-activated cation current (Ih) was not required to induce MPOs, but when expressed together with CaV3.1 channels, it broadened the membrane potential range over which MPOs were observed. Overall, the data demonstrate that the CaV3.1 window current is critical in triggering intrinsic electrical and [Ca2+]i oscillations.  相似文献   

11.
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.  相似文献   

12.
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.  相似文献   

13.
Ca2+ entry through L-type calcium channels (CaV1.2) is critical in shaping the cardiac action potential and initiating cardiac contraction. Modulation of CaV1.2 channel gating directly affects myocyte excitability and cardiac function. We have found that phospholemman (PLM), a member of the FXYD family and regulator of cardiac ion transport, coimmunoprecipitates with CaV1.2 channels from guinea pig myocytes, which suggests PLM is an endogenous modulator. Cotransfection of PLM in HEK293 cells slowed CaV1.2 current activation at voltages near the threshold for activation, slowed deactivation after long and strong depolarizing steps, enhanced the rate and magnitude of voltage-dependent inactivation (VDI), and slowed recovery from inactivation. However, Ca2+-dependent inactivation was not affected. Consistent with slower channel closing, PLM significantly increased Ca2+ influx via CaV1.2 channels during the repolarization phase of a human cardiac action potential waveform. Our results support PLM as an endogenous regulator of CaV1.2 channel gating. The enhanced VDI induced by PLM may help protect the heart under conditions such as ischemia or tachycardia where the channels are depolarized for prolonged periods of time and could induce Ca2+ overload. The time and voltage-dependent slowed deactivation could represent a gating shift that helps maintain Ca2+ influx during the cardiac action potential waveform plateau phase.  相似文献   

14.
Grina/TMBIM3 is a poorly characterized transmembrane protein with a broad expression pattern in mammals and with a very ancient origin within eukaryotes. Although initially characterized as an NMDA-receptor associated subunit, there is increasing evidence that Grina/TMBIM3 is involved in the unfolded protein response and controls apoptosis via regulation of Ca2+ homeostasis. Here, we investigate a putative direct interaction of Grina/TMBIM3 with voltage gated Ca2+ channels, in particular with the CaV2.2 α1-subunit and describe its modulatory effects on the current through CaV2.2 N-type channels. Direct interaction was confirmed by co-immunoprecipitation studies and membrane localization was proven. Co-expression of Grina/TMBIM3 with CaV2.2 channels resulted in a significant decrease of the current amplitude and in a slowing of the kinetics of current activation. This effect was accompanied by a significant shift of the voltage dependencies of activation time constants towards more depolarized voltages. Application of a stimulus protocol including a strong depolarizing pulse relieved inhibition of current amplitude by Grina/TMBIM3. When Grina/TMBIM3 was present, inactivation by an action potential-like train of pulses was diminished. Both observations resemble mechanisms that are well-studied modulatory effects of G-protein βγ subunits on CaV2 channels. The impact of Grina/TMBIM3 and G-protein βγ subunits are rather comparable with respect to suppression of current amplitude and slowing of activation kinetics. Furthermore, both modulators had the same effect on current inactivation when evoked by an action potential-like train of pulses.  相似文献   

15.
Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca2+ mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca2+ permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca2+ channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca2+ channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca2+ transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca2+ channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca2+-driven signals in excitable cells.  相似文献   

16.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

17.
Exposure to hyperbaric pressure (HP) exceeding 100 msw (1.1 MPa) is known to cause a constellation of motor and cognitive impairments named high‐pressure neurological syndrome (HPNS), considered to be the result of synaptic transmission alteration. Long periods of repetitive HP exposure could be an occupational risk for professional deep‐sea divers. Previous studies have indicated the modulation of presynaptic Ca2+ currents based on synaptic activity modified by HP. We have recently demonstrated that currents in genetically identified cellular voltage‐dependent Ca2+ channels (VDCCs), CaV1.2 and CaV3.2 are selectively affected by HP. This work further elucidates the HPNS mechanism by examining HP effect on Ca2+ currents in neuronal VDCCs, CaV2.2 and CaV2.1, which are prevalent in presynaptic terminals, expressed in Xenopus oocytes. HP augmented the CaV2.2 current amplitude, much less so in a channel variation containing an additional modulatory subunit, and had almost no effect on the CaV2.1 currents. HP differentially affected the channels' kinetics. It is, therefore, suggested that HPNS signs and symptoms arise, at least in part, from pressure modulation of various VDCCs.  相似文献   

18.
Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.  相似文献   

19.
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.  相似文献   

20.
Voltage-gated Ca2+ channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca2+. As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca2+-channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号