首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Life on Mars     
Abstract

There is evidence that at one time Mars had liquid water habitats on its surface. Studies of microbial communities in cold and dry environments on the Earth provide a basis for discussion of the possible nature of any life that may have existed on Mars during that time. Of particular relevance are the cyanobacterial communities found in hypolithic and endolithic habitats in deserts. Microbial mats found under ice-covered lakes provide an additional possible Martian system. Results obtained from these field studies can be used to guide the search for fossil evidence of life on Mars. It is possible that in the future life will be reintroduced on Mars in an effort to restore that planet to habitable conditions. In this case the organisms under study as exemplars of past life may provide the hardy stock of pioneering Martian organisms. These first organisms must be followed by plants. The feasibility of reviving Mars will depend on the ability of plants to grow in an abundance of CO2 but at extremely low pressures, temperatures, O2, and N2 levels. On Mars, biology was, and is, destiny.  相似文献   

2.
Certain methanogens have been shown to grow on a Mars soil simulant following a washing procedure using a carbonate buffer. In experiments where liquid fractions from the soil simulant and water mixtures were used in place of the buffer, two out of three of the species demonstrated significantly greater methane production compared to the buffer.  相似文献   

3.
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.  相似文献   

4.
Phytoremediation of Phosphorus-Enriched Soils   总被引:1,自引:0,他引:1  
After numerous years of application of phosphorus (P) fertilizer and/or manures, many soils accumulate high levels of P, increasing the risk of P transfer via surface runoff. While current and future regulations may limit P application to soil, little effort is given to the reduction of soils already enriched with P. To evaluate the potential of phytoremediation for decreasing available P in soil, the P uptake of several crops and vegetables grown on a high P soil was studied. Plant shoot and root P contents, plant-available soil P, and potential P removal under optimum conditions were examined. None of the plants were “true” P hyperaccumulators, although all removed some P from the soil. Whole corn plants (for silage) and Indian mustard removed the highest amount of P; 114 and 108 kg ha-1, respectively. If only the grain from corn and Indian mustard were harvested, significantly lower amounts of P were removed from the field. These results show that there is extensive variation in the uptake of P by various crop species. For soils highly enriched with P, it may be desirable to grow a plant species capable of removing above average concentrations of P and to harvest the whole plant because a large fraction of the plant P is contained within the leaves and stems.  相似文献   

5.
Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.  相似文献   

6.
Summary Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmossphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastesmay be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.  相似文献   

7.
Two major questions have been raised by prior explorations of Mars. Has there ever been abundant water on Mars? Why is the iron found in the Martian soil not readily seen in the reflectance spectra of the surface? The work reported here describes a model soil system of Mars Soil Analog Materials, MarSAM, with attributes which could help resolve both of these dilemmas. The first set of MarSAM consisted of a suite of variably iron/calcium-exchanged montmorillonite clays. Several properties, including chemical composition, surface-ion composition, water adsorption isotherms, and reflectance spectra, of these clays have been examined. Also, simulations of the Viking Labeled Release Experiment using the MarSAM were performed. The results of these studies show that surface iron and adsorbed water are important determinants of clay behavior as evidenced by changes in reflectance, water absorption, and clay surface reactions. Thus, these materials provide a model soil system which reasonably satisfies the constraints imposed by the Viking analyses and remote spectral observations of the Martian surface, and which offers a sink for significant amounts of water. Finally, our initial results may provide insights into the mechanisms of reactions that occur on clay surfaces as well as a more specific approach to determining the mineralogy of Martian soils.  相似文献   

8.
Phytomanagement technology is recognized as an inexpensive and environmental friendly strategy for managing natural-occurring selenium (Se) in soils and in poor quality waters. Multi-year field and greenhouse studies were conducted with different plant species in California, USA and Punjab, India under high Se growing conditions. Some of the plant species included; canola (Brassica napus), mustard (B. juncea), broccoli (B. oleracea), spearmint (Mentha viridis), sugarcane (Saccharum officcinarum), guar (Cyamopsis tetragonoloba), wheat (Triticum aestivum), and poplar (Populus deltoides). California soils had a sodium-sulfate-dominated salinity between 6-10 dS m(-1), while Indian soils had a calcium carbonate salinity less than 1 dS m(-1). Results demonstrated that high sulfate conditions reduced plant Se accumulation more than 100 x in Californian grown plants compared to Se accumulation in Indian grown plants. Tissue concentrations generally did not exceed 10 and 200 mg kg DM(-1) in leaves of plants grown in California and India, respectively. At these plant concentrations, Se phytomanagement is more effective in Indian soils than in California soils. Successful management of Se by plants requires selecting crops or crop rotations that are tolerant of the soil condition and identifying and creating new viable Se-enriched products.  相似文献   

9.
Many lichens are able to live and photosynthesize under harsh conditions, characterized by low temperatures, aridity and high UV radiation fluxes. Some lichen species are even able to survive simulated and real space conditions. Many tests after space exposure on the satellite FOTON M3 and on the International Space Station have shown their capacity to maintain physiological and photosynthetic activity, and their capacity to germinate and grow after being exposed to space parameters. Further tests using simulated Martian atmospheres, temperatures, humidity profiles and UV radiation spectra and fluxes have shown maintenance of photosynthetic activity of Xanthoria elegans. Results from space and Mars simulation experiments on lichens such as X. elegans are valuable for determining the habitability of a planet and for the search for possible life-supporting habitats on planets like Mars.  相似文献   

10.
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.  相似文献   

11.
Magnetite biomineralization and ancient life on Mars   总被引:2,自引:0,他引:2  
Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.  相似文献   

12.
13.
Gas compositional changes in the headspace of the Viking Biology Gas Exchange Experiment can originate from biological activity as well as redox chamical reactions, sorption and desorption phenomena, acid-base reactions, and trapped gas release. Biological phenomena are differentiated from the nonbiological gas changes by their dynamical qualities, notably by the ability of the M4 medium to sustain biological activity. Medium incompatibilities, with potential microbial types in soils, are demonstrated to be ameliorated by an incubation chamber design that provides thin films of medium around particulate soil masses and salt gradients when the soil is wet from below. Two phenomena in soils, the production and consumption of hydrogen and carbon monoxide, are coupled for a newly isolatedClostridium sp. A decrease in molecular nitrogen production by denitrifying organisms in the second and subsequent incubation cycles results from competitive nitrate utilization by anaerobic organisms. All soils tested from the cold, dry desert regions of Antarctica contain predominantly aerobic organisms while only six of the twelve soils respire using nitrate under anaerobic conditions. Although dry Antarctica soils are not the best simulations of Martian anoxic conditions, their responses show that long incubation times may be needed on Mars to demonstrate biological gas change phenomena.  相似文献   

14.
通过盆栽试验研究了铅污染土壤上施用有机肥、磷肥和柠檬酸对雪里蕻光合特性的影响.结果表明:不同施肥处理显著提高了雪里蕻的产量、叶绿素含量和对光强的适应范围,均使净光合速率(Pn)、光饱和点(LSP)和表观量子效率(AQY)显著升高,而使光补偿点(LCP)降低;适宜的施肥调控措施可以保持较高的Pn、LSP和AQY,其中施用磷肥获得了最大的Pn、LSP和AQY值.各施肥处理下Fv/Fm的值均大于0.8,均未引起作物光抑制;在不同施肥处理中,高量有机追肥处理可以使叶片PSⅡ的潜在量子效率和PSⅡ原初光能转换效率保持在最高水平.可见,适宜的施肥措施可以显著改善铅污染土壤上雪里蕻的光合特性而促进其生长.  相似文献   

15.
Summary Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the Martian atmosphere and regolith. In this study the stability of several organic substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrozable content of the Murchison meteorite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.  相似文献   

16.
Long-term agricultural fertilization strategies gradually change soil properties including the associated microbial communities. Cultivated crops recruit beneficial microbes from the surrounding soil environment via root exudates. In this study, we aimed to investigate the effects of long-term fertilization strategies across field sites on the rhizosphere prokaryotic (Bacteria and Archaea) community composition and plant performance. We conducted growth chamber experiments with lettuce (Lactuca sativa L.) cultivated in soils from two long-term field experiments, each of which compared organic versus mineral fertilization strategies. 16S rRNA gene amplicon sequencing revealed the assemblage of a rhizosphere core microbiota shared in all lettuce plants across soils, going beyond differences in community composition depending on field site and fertilization strategies. The enhanced expression of several plant genes with roles in oxidative and biotic stress signalling pathways in lettuce grown in soils with organic indicates an induced physiological status in plants. Lettuce plants grown in soils with different fertilization histories were visibly free of stress symptoms and achieved comparable biomass. This suggests a positive aboveground plant response to belowground plant–microbe interactions in the rhizosphere. Besides effects of fertilization strategy and field site, our results demonstrate the crucial role of the plant in driving rhizosphere microbiota assemblage.  相似文献   

17.
Summary A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0° during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.  相似文献   

18.
Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya   总被引:3,自引:0,他引:3  
Most commonly used hyperaccumulator plants for phytoextraction of metals evolved on soils where moisture is limited throughout much of the year. As these plant species are commercialized for use, they are frequently moved from the point of evolution to locations where environmental conditions may be significantly different. Greatest among these potential differences is soil moisture. The objective of this study was therefore to determine whether these plants could grow in soils with much higher soil moisture and whether they would continue to hyperaccumulate metals as soils approach saturation. We examined extractable soil metal concentrations, plant growth, and metal accumulation for the Ni hyperaccumulators, Alyssum murale and Berkheya coddii and the Zn hyperaccumulators Thlaspi caerulescens cultivars AB300 and AB336. Non-hyperaccumulating control species for each were also examined. In general, extractable soil concentrations of Ni decreased with increasing soil moisture content. Few significant effects related to Zn extractability were observed for any of the soil moisture treatments. The biomass of all tested species was generally greater at higher soil moisture and inhibited at low soil moisture. Further, plants accumulated large amounts of metals from soil at higher soil moisture. Highest foliar concentrations of Zn or Ni were found at the two highest WHCs of 80 and 100%. These results show that hyperaccumulators grow well under conditions of high soil moisture content and that they continue to hyperaccumulate metals. Thus, growing Thlaspi, Alyssum, and Berkheya for commercial phytoextraction under nonnative conditions is appropriate and suggests that this technology may be applied to a wide and diverse range of soil types, climatic conditions, and irrigation regimes.  相似文献   

19.
以露地盆栽的苏丹草、向日葵、芥菜、萝卜4种植物为对象,研究它们对土壤中不同浓度(0、2.5、5.0、10.0、20.0、40.0mg/kg)133Cs、88Sr的吸收积累状况,并比较它们对133Cs、88Sr污染土壤的修复效率。结果显示:(1)4种植物单株生物量在各浓度处理下均表现为向日葵>萝卜>芥菜>苏丹草,但它们对133Cs的吸收能力为萝卜>苏丹草>向日葵>芥菜,单株133Cs累积量为向日葵>萝卜>苏丹草>芥菜,单株88Sr累积量表现为萝卜、向日葵>苏丹草>芥菜,而且4种植物对88Sr的吸收能力均强于133Cs。(2)萝卜在除10.0mg/kg133Cs外的各处理中富集系数均大于1,对土壤中133Cs的吸收能力较强;苏丹草在除5.0mg/kg133Cs处理外的转运系数均大于1,其余3种植物在各处理中的转运系数均低于1;88Sr在萝卜体内从根系向上转运到地上部分的能力明显高于其它3种植物,芥菜、向日葵次之。(3)4种植物对88Sr在体内向上的迁移转运能力均大于133Cs。研究表明,向日葵单株对133Cs、88Sr污染土壤的修复效率最高,萝卜次之,且向日葵和萝卜分别因其生物量和吸收能力优势而对被污染土壤中的133Cs和88Sr具有更强的提取能力。  相似文献   

20.
Environmental stresses affect plant growth and performance in nature. Host plant quality in turn affects herbivore performance and population dynamics. In view of these interactions, two major hypotheses were formulated. The plant stress hypothesis proposes that physiologically stressed plants become more susceptible to herbivores. The plant vigour hypothesis proposes that plants that grow vigorously are favourable to herbivores. Here we test the plant stress/plant vigour hypotheses for a leaf miner, Agromyza nigripes (Diptera; Agromyzidae), on the grass Holcus lanatus. We assessed larval performance (survival, developmental time, pupal mass) on grasses growing under different levels of nutrients (Hoagland solution) and drought stress, under controlled field and greenhouse conditions. Plant vigour and nutrient content were high on soils with an intermediate nutrient concentration and lower under drought stress and soil nutrient shortage and overdose. Larval performance was also highest on wet soils with intermediate nutrient supply. The results of the mining flies support the plant vigour hypothesis (density, survival and development better on vigorous plants). Herbivore performance is higher on leaves with a higher protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号