首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibronectin (FN) assembly into extracellular matrix is tightly regulated and essential to embryogenesis and wound healing. FN fibrillogenesis is initiated by cytoskeleton-derived tensional forces transmitted across transmembrane integrins onto RGD binding sequences within the tenth FN type III (10FNIII) domains. These forces unfold 10FNIII to expose cryptic FN assembly sites; however, a specific sequence has not been identified in 10FNIII. Our past steered molecular dynamics simulations modeling 10FNIII unfolding by force at its RGD loop predicted a mechanical intermediate with a solvent-exposed N terminus spanning the A and B β-strands. Here, we experimentally confirm that the predicted 23-residue cryptic peptide 1 (CP1) initiates FN multimerization, which is mediated by interactions with 10FNIII that expose hydrophobic surfaces that support 8-anilino-1-napthalenesulfonic acid binding. Localization of multimerization activity to the C terminus led to the discovery of a minimal 7-amino acid “multimerization sequence” (SLLISWD), which induces polymerization of FN and the clotting protein fibrinogen in addition to enhancing FN fibrillogenesis in fibroblasts. A point mutation at Trp-6 that reduces exposure of hydrophobic sites for 8-anilino-1-napthalenesulfonic acid binding and β-structure formation inhibits FN multimerization and prevents physiological cell-based FN assembly in culture. We propose a model for cell-mediated fibrillogenesis whereby cell traction force initiates a cascade of intermolecular exchange starting with the unfolding of 10FNIII to expose the multimerization sequence, which interacts with strand B of another 10FNIII domain via a Trp-mediated β-strand exchange to stabilize a partially unfolded intermediate that propagates FN self-assembly.  相似文献   

2.
This review summarized current data on the structure of fibronectin (FN), a multifunctional glycoprotein of vertebrates. FN is not only a permanent component of the extracellular matrix (ECM) but also an important regulator of cell functions via transformation of the ECM composition and organization and/or interaction with receptor and other membranebound cell proteins. Multifunctionality of FN owes hierarchical relationships between its structuralfunctional determinants, which comprise the linear ones (FN peptide fragments), association zones (surface contacts between the FN molecule and a FN-associated protein) and functional domains (those binding fibrin, heparin, gelatin and integrins). The modular architectonic principle of FN organization is pivotal to intrinsic adaptation of this glycoprotein to changing microenvironmental conditions. We also discuss the issue of key stages of FN fibrillogenesis with a special focus on the molecular mechanisms that underlie polymerization of FN molecules.  相似文献   

3.
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell–FN interactions.  相似文献   

4.
Micropatterning is becoming a powerful tool for studying morphogenetic and differentiation processes of cells. Here we describe a new micropatterning technique, which we refer to as microcontact peeling. Polydimethylsiloxane (PDMS) substrates were treated with oxygen plasma, and the resulting hydrophilic layer of the surface was locally peeled off through direct contact with a peeling stamp made of aluminum, copper, or silicon. A hydrophobic layer of PDMS could be selectively exposed only at the places of the physical contact as revealed by water contact angle measurements and angle-resolved X-ray photoelectron spectroscopy, which thus enabled successful micropatterning of cells with micro-featured peeling stamps. This new micropatterning technique needs no procedure for directly adsorbing proteins to bare PDMS in contrast to conventional techniques using a microcontact printing stamp. Given the several unique characteristics, the present technique based on the peel-off of inorganic materials may become a useful option for performing cell micropatterning.  相似文献   

5.
Collagen fiber assembly affects many physiological processes and is tightly controlled by collagen-binding proteins. However, to what extent membrane-bound versus cell-secreted collagen-binding proteins affect collagen fibrillogenesis is not well understood. In our previous studies, we had demonstrated that the membrane-anchored extracellular domain (ECD) of the collagen receptor discoidin domain receptor 2 (DDR2) inhibits fibrillogenesis of collagen endogenously secreted by the cells. These results led to a novel functional role of the DDR2 ECD. However, since soluble forms of DDR1 and DDR2 containing its ECD are known to naturally exist in the extracellular matrix, in this work we investigated if these soluble DDR ECDs may have a functional role in modulating collagen fibrillogenesis. For this purpose, we created mouse osteoblast cell lines stably secreting DDR1 or DDR2 ECD as soluble proteins. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays were used to demonstrate that DDR ECD expression reduced the rate and quantity of collagen deposition and induced significant changes in fiber morphology and matrix mineralization. Collectively, our studies advance our understanding of DDR receptors as powerful regulators of collagen deposition in the ECM and elucidate their multifaceted role in ECM remodeling.  相似文献   

6.
The extracellular matrix (ECM) glycoprotein fibronectin (FN) requires the help of cells to assemble into a functional fibrillar matrix, which then orchestrates the assembly of other ECM proteins and promotes cell adhesion, migration and signalling. Fibrillogenesis is initiated and governed by cell surface integrins that bind to specific sites in the FN molecule. Recent studies identified novel integrin binding sites in FN that can also participate in FN fibril formation and in morphogenetic events during development.  相似文献   

7.
During extracellular matrix assembly, fibronectin (FN) binds to cell surface receptors and initiates fibrillogenesis. As described in this report, matrix assembly has been dissected using recombinant FN polypeptides (recFNs) expressed in mammalian cells via retroviral vectors. RecFNs were assayed for incorporation into the detergent-insoluble cell matrix fraction and for formation of fibrils at the cell surface as detected by indirect immunofluorescence. Biochemical and immunocytochemical data are presented defining the minimum domain requirements for FN fibrillogenesis. The smallest functional recFN is half the size of native FN and contains intact amino- and carboxy-terminal regions with a large internal deletion spanning the collagen binding domain and the first seven type III repeats. Five type I repeats at the amino terminus are required for assembly and have FN binding activity. The dimer structure mediated by the carboxy-terminal interchain disulfide bonds is also essential. Surprisingly, recFNs lacking the RGDS cell binding site formed a significant fibrillar matrix. Therefore, FN-FN interactions and dimeric structure appear to be the major determinants of fibrillogenesis.  相似文献   

8.
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions.Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.  相似文献   

9.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

10.
11.
The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.  相似文献   

12.
Here, we show that fibronectin (FN) peptides derived from two distinct regions promote the insulin-induced adipocyte differentiation of ST-13 cells by preventing FN fibrillogenesis. ST-13 cells formed numerous FN fibrils under nonadipogenic conditions, whereas this FN fibrillogenesis was suppressed by adipose induction with insulin. The insulin-induced adipocyte differentiation was promoted by an amino-terminal 24-kDa fragment of FN, accompanied by further suppression of FN fibrillogenesis. The 24 K fragment prevented FN matrix assembly by direct incorporation into the FN matrix. Like the 24 K fragment, a peptide from the 14th type III repeat, termed FNIII14, which suppressed the integrin alpha 5 beta 1-mediated adhesion of ST-13 cells to FN, accelerated the adipocyte differentiation by preventing FN fibrillogenesis without direct incorporation into the FN matrix. FNIII14 induced the conformation change of beta1 integrins of K562 cells from active to resting, as judged by FACS analysis using a monoclonal antibody AG89 directed to an active beta1 integrin-dependent epitope. Binding of a (125)I-labeled FN fragment containing the RGD cell adhesive site to ST-13 cell surface was dissociated by FNIII14, with a concomitant binding of FNIII14 itself to the cell surface. The affinity labeling of ST-13 cells using biotinylated FNIII14 showed that FNIII14 specifically bound to a nonintegrin membrane protein with M(r) of around 50 kDa. Thus, the results indicated that prevention of FN fibrillogenesis by the 24 K Fib 1 fragment and FNIII14 caused the promotion of adipocyte differentiation of ST-13 cells and that the former was due to the direct incorporation into the FN matrix and that the latter might be interpreted by negative regulation of FN receptor alpha 5 beta 1 activity.  相似文献   

13.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

14.
PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis   总被引:1,自引:0,他引:1  
We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin β1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated α5β1 integrin and cytoskeleton strength during cell movement.  相似文献   

15.
The mechanical hierarchies of fibronectin observed with single-molecule AFM   总被引:7,自引:0,他引:7  
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanical properties of fibronectin (FN) and its individual FNIII domains. We found that fibronectin is highly extensible due to the unfolding of its FNIII domains. We found that the native FNIII region displays strong mechanical unfolding hierarchies requiring 80 pN of force to unfold the weakest domain and 200 pN for the most stable domain. In an effort to determine the identity of the weakest/strongest domain, we engineered polyproteins composed of an individual domain and measured their mechanical stability by single-protein atomic force microscopy (AFM) techniques. In contrast to chemical and thermal measurements of stability, we found that the tenth FNIII domain is mechanically the weakest and that the first and second FNIII domains are the strongest. Moreover, we found that the first FNIII domain can acquire multiple, partially folded conformations, and that their incidence is modulated strongly by its neighbor FNIII domain. The mechanical hierarchies of fibronectin demonstrated here may be important for the activation of fibrillogenesis and matrix assembly.  相似文献   

16.
The process by which fibronectin (FN), a soluble multidomain protein found in tissue fluids, forms insoluble fibrillar networks in the extracellular matrix is poorly understood. Cryptic sites found in FN type III domains have been hypothesized to function as nucleation points, thereby initiating fibrillogenesis. Exposure of these sites could occur upon tension-mediated mechanical rearrangement of type III domains. Here, we present the solution structures of the second type III domain of human FN ((2)FNIII), and that of an interaction complex between the first two type III domains ((1-2)FNIII). The two domains are connected through a long linker, flexible in solution. A weak but specific interdomain interaction maintains (1-2)FNIII in a closed conformation that associates weakly with the FN N-terminal 30 kDa fragment (FN30 kDa). Disruption of the interdomain interaction by amino-acid substitutions dramatically enhances association with FN30 kDa. Truncation analysis of (1-2)FNIII reveals that the interdomain linker is necessary for robust (1-2)FNIII-FN30 kDa interaction. We speculate on the importance of this interaction for FN function and present a possible mechanism by which tension could initiate fibrillogenesis.  相似文献   

17.

Background

Numerous proteins and small leucine-rich proteoglycans (SLRPs) make up the composition of the extracellular matrix (ECM). Assembly of individual fibrillar components in the ECM, such as collagen, elastin, and fibronectin, is understood at the molecular level. In contrast, the incorporation of non-fibrillar components and their functions in the ECM are not fully understood.

Scope of review

This review will focus on the role of the matricellular protein thrombospondin (TSP) 2 in ECM assembly. Based on findings in TSP2-null mice and in vitro studies, we describe the participation of TSP2 in ECM assembly, cell–ECM interactions, and modulation of the levels of matrix metalloproteinases (MMPs).

Major conclusions

Evidence summarized in this review suggests that TSP2 can influence collagen fibrillogenesis without being an integral component of fibrils. Altered ECM assembly and excessive breakdown of ECM can have both positive and negative consequences including increased angiogenesis during tissue repair and compromised cardiac tissue integrity, respectively.

General significance

Proper ECM assembly is critical for maintaining cell functions and providing structural support. Lack of TSP2 is associated with increased angiogenesis, in part, due to altered endothelial cell–ECM interactions. Therefore, minor changes in ECM composition can have profound effects on cell and tissue function. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

18.
Fibronectin (FN) is an extracellular matrix (ECM) protein found soluble in corporal fluids or as an insoluble fibrillar component incorporated in the ECM. This phenomenon implicates structural changes that expose FN binding sites and activate the protein to promote intermolecular interactions with other FN. We have investigated, using fluorescence and circular dichroism spectroscopy, the unfolding process of human fibronectin induced by urea in different ionic strength conditions. At any ionic strength, the equilibrium unfolding data are well described by a four-state equilibrium model N <= => I(1) <= =>I(2) <= => U. Fitting this model to experimental values, we have determined the free energy change for the different steps. We found that the N <= => I(1) transition corresponds to a free energy of 10.5 +/- 0.4 kcal/mol. Comparable values of free energy change are generally associated with a partial unfolding of the type III domain. For the I(1) <= => I(2) transition, the free energy change is 7.6 +/- 0.4 kcal/mol at low ionic strength but is twice as low at high ionic strength. This result is consistent with observations indicating that the complete unfolding of the type III domain from partially unfolded forms necessitates about 5 kcal/mol. The third step, I(2) <= => U, which leads to the complete unfolding of fibronectin, corresponds to a free energy change of 14.4 +/- 0.9 kcal/mol at low ionic strength whereas this energy is again twice as low under high ionic strength conditions. This hierarchical unfolding of fibronectin, as well as the stability of the different intermediates controlled by ionic strength demonstrated here, could be important for the understanding of activation of the matrix assembly.  相似文献   

19.
Skin fibroblasts derived from Ehlers-Danlos syndrome (EDS) patients lack an organized extracellular matrix (ECM) of fibronectin (FN) and often show an accumulation of cytoplasmic FN. The treatment of EDS cells of different types (I to VIII) with 10-7 M dexamethasone (dex), as well as cocultivation with control fibroblasts, induced in most cases the assembly of a FN-like ECM. The study of FN mRNA expression by dot-blot hybridization and of FN released into the culture media of EDS cells showed that the correction of the defective FN-ECM of EDS cells by dex treatment is associated in most cases with an increase of FN mRNA synthesis and of secreted FN.  相似文献   

20.
Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.(5) This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern. The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.(6) These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior(7) to the creation of microelectronics.(8) While other types of monolayer chemistry have been used for cell culture studies, including work from our group using trichlorosilanes to create patterns directly on glass substrates,(9) patterned monolayers formed from alkane thiols on gold are straight-forward to prepare. Moreover, the monomers used for monolayer preparation are commercially available, stable, and do not require storage or handling under inert atmosphere. Patterned substrates prepared from alkane thiols can also be recycled and reused several times, maintaining cell confinement.(10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号